首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
A new method for reductive dechlorination of polychlorinated dibenzo-p-dioxins (PCDDs) and remediation of contaminated soils is described that uses zerovalent iron as the dechlorination agent and subcritical water as reaction medium and extractive solvent. It is found that the zerovalent iron can be applied for stepwise dechlorination of octachlorinated dibenzo-p-dioxin (OCDD) on various matrixes in subcritical water. By using iron powder as matrix higher chlorinated congeners were practically completely reduced to less than tetra-substituted homologues. A significant part of residual OCDD, when it was spiked in to soils, and formed less chlorinated congeners are extracted with water in the given conditions. The solubility of OCDD was increased by a 4–6 orders over its solubility at ambient conditions. The new method of contentious-flow extraction is described.  相似文献   

2.
Activated carbon (AC) can help overcome toxicity of pollutants to microbes and facilitate soil bioremediation. We used this approach to treat a Histosol and an Alluvial soil historically contaminated with PCB (4190 and 1585 mg kg−1, respectively; primarily tri-, tetra- and pentachlorinated congeners). Results confirmed PCB persistence; reductions in PCB extractable from control and AC-amended soils were mostly due to a decrease in tri- and to some extent tetrachlorinated congeners as well as formation of a bound fraction. Mechanisms of PCB binding by soil and AC were different. In addition to microbial degradation of less chlorinated congeners, we postulate AC catalyzed dechlorination of higher chlorinated congeners. A large decrease in bioavailable PCB in AC-amended soils was demonstrated by greater clover germination and biomass. Phytotoxicity was low in treated soils but remained high in untreated soils for the duration of a 39-month experiment. These observations indicate the utility of AC for remediation of soils historically contaminated with PCB.  相似文献   

3.
Zhang F  Chen J  Zhang H  Ni Y  Liang X 《Chemosphere》2007,68(9):1716-1722
Dechlorination of octachlorodibenzo-p-dioxin (OCDD) was carried out in ethanol-water (v/v=1:1) solution of NaOH in the presence of Pd/C catalysts with the use of H(2). The substrate was dechlorinated with Pd/C under mild conditions (atmospheric pressure and <100 degrees C) to give a chlorine-free product, dibenzo-p-dioxin (DD), in high yields. After reaction of 3h at 50 degrees C, 95.9% OCDD was degraded to low dechlorinated congeners and the yield of DD was 77.4%. We have also studied the dechlorination selectivity of chlorine atoms on the different substituted positions and postulated the dechlorination pathway of OCDD. For OCDD, the 2-position has higher reactivity than 1-position, but the difference is very small. From the distribution statistics of the intermediates during the reaction, we postulate that the steric effect plays an important role during the reaction and affect the dechlorination pathway of OCDD.  相似文献   

4.
Fueno H  Tanaka K  Sugawa S 《Chemosphere》2002,48(8):771-778
The dechlorination reaction pathways of 1,2,3,4,6,7,8,9-octachlorodibenzo-p-dioxin (OCDD) by the hydrogen atom are investigated by the density-functional theory B3PW91 method. The dechlorination reactions have large exothermicity and small activation energies. The activation energies (approximately 5 kcal/mol) of the sigma-complex formation due to the hydrogen addition are lower than those (approximately 9 kcal/mol) of the direct chlorine abstraction. It is suggested that the sigma-complex plays an important role in the reactions, although it has scarcely been shown in previous studies of the dechlorination of dioxins. The sigma-complex formation is favored at low temperatures and the chlorine abstraction is favored at high temperatures. Furthermore, it is found that the lateral positions have a marginal preference over the longitudinal positions. The dechlorination of OCDD by the hydrogen atom is thus not likely to result in a dominant formation of the laterally substituted toxic congeners.  相似文献   

5.
INTRODUCTION: Chlorinated ethanes and ethenes are among the most frequently detected organic pollutants of water. Their physicochemical properties are such that they can contaminate aquifers for decades. In favourable conditions, they can undergo degradation. In anaerobic conditions, chlorinated solvents can undergo reductive dechlorination. DEGRADATION PATHWAYS: Abiotic dechlorination is usually slower than microbial but abiotic dechlorination is usually complete. In favourable conditions, abiotic reactions bring significant contribution to natural attenuation processes. Abiotic agents that may enhance the reductive dechlorination of chlorinated ethanes and ethenes are zero-valent metals, sulphide minerals or green rusts. OXIDATION: At some sites, permanganate and Fenton's reagent can be used as remediation tool for oxidation of chlorinated ethanes and ethenes. SUMMARY: Nanoscale iron or bimetallic particles, due to high efficiency in degradation of chlorinated ethanes and ethenes, have gained much interest. They allow for rapid degradation of chlorinated ethanes and ethenes in water phase, but they also give benefit of treating dense non-aqueous phase liquid.  相似文献   

6.
Microbial transformation and degradation of polychlorinated biphenyls   总被引:7,自引:0,他引:7  
This paper reviews the potential of microorganisms to transform polychlorinated biphenyls (PCBs). In anaerobic environments, higher chlorinated biphenyls can undergo reductive dehalogenation. Meta- and para-chlorines in PCB congeners are more susceptible to dechlorination than ortho-chlorines. Anaerobes catalyzing PCB dechlorination have not been isolated in pure culture but there is strong evidence from enrichment cultures that some Dehalococcoides spp. and other microorganisms within the Chloroflexi phylum can grow by linking the oxidation of H(2) to the reductive dechlorination of PCBs. Lower chlorinated biphenyls can be co-metabolized aerobically. Some aerobes can also grow by utilizing PCB congeners containing only one or two chlorines as sole carbon/energy source. An example is the growth of Burkholderia cepacia by transformation of 4-chlorobiphenyl to chlorobenzoates. The latter compounds are susceptible to aerobic mineralization. Higher chlorinated biphenyls therefore are potentially fully biodegradable in a sequence of reductive dechlorination followed by aerobic mineralization of the lower chlorinated products.  相似文献   

7.
Doong RA  Lai YL 《Chemosphere》2006,64(3):371-378
The dechlorination of tetrachloroethylene (PCE) by zerovalent iron (Fe(0)) in the presence of metal ions and humic acid was investigated. In the absence of metal ion and humic acid, 64% of the initial PCE was dechlorinated after 125 h with the production of ethane and ethene as the major end products. The dechlorination followed pseudo-first-order kinetics and the normalized surface rate constant (k(SA)) for PCE dechlorination was (3.43+/-0.61)x10(-3)lm(-2)h(-1). Addition of metal ions enhanced the dechlorination efficiency and rate of PCE, and the enhancement effect followed the order Ni(II)>Cu(II)>Co(II). The k(SA) for PCE dechlorination in the presence of metal ions were 2-84 times higher than that in the absence of metal ions. X-ray photoelectron spectroscopy (XPS) showed that Cu(II) and Ni(II) were reduced by Fe(0) to zerovalent metals, and resulted in the formation of bimetallic system to accelerate the dechlorination reaction. On the contrary, humic acid out-competed the reactive sites on iron surface with PCE, and subsequently decreased the dechlorination efficiency and rate of PCE by Fe(0). However, the reactivity of Fe(0) for PCE dechlorination in the presence of metal ions and humic acid increased by a factor of 3-161 when compared to the iron system containing humic acid alone. Since humic acid and metal ions are the most often found co-existing compounds in the contaminated aquifers with chlorinated hydrocarbons, results obtained in this study is useful to better understand the feasibility of using Fe(0) for long-term application to the remediation of contaminated sites.  相似文献   

8.
Zerovalent iron (ZVI) abiotically degrades several chlorinated aliphatic hydrocarbons (CAHs) via reductive dechlorination, which offers perspectives for in situ groundwater remediation applications. The difference in reactivity between ZVI particles is often linked with their specific surface area. However, other parameters may influence the reactivity as well. Earlier, we reported for a set of microscale zerovalent iron (mZVI) particles the disappearance kinetic of different CAHs which were collected under consistent experimental conditions. In the present study, these kinetic data were correlated with the carbon, oxygen and sulfur content of mZVI particles. It was confirmed that not only the specific surface area affects the disappearance kinetic of CAHs, but also the chemical composition of the mZVI particles. The chemical composition, in addition, influences CAHs removal mechanism inducing sorption onto mZVI particles instead of dechlorination. Generally, high disappearance kinetic of CAHs was observed for particles containing less oxygen. A high carbon content, on the other hand, induced nonreactive sorption of the contaminants on the mZVI particles. To obtain efficient remediation of CAHs by mZVI particles, this study suggested that the carbon and oxygen content should not exceed 0.5% and 1% respectively. Finally, the efficiency of the mZVI particles may be improved to some extent by enriching them with sulfur. However, the impact of sulfur content on the reactivity of mZVI particles is less pronounced than that of the carbon and oxygen content.  相似文献   

9.
四氯化碳的生产和使用,给人类带来了较大危害.为此,采用纳米铁粉这一新方法对其进行脱氯处理.试验以纳米级铁粉对四氯化碳的脱氯率为考察指标,选用L25(56)正交试验方案,考察了降解介质的初始pH值、纳米铁粉的质量、降解温度、摇床转速和脱氯时间5个影响因素.结果表明,pH值这一因素有极显著影响;在得出的纳米铁粉对四氯化碳脱氯的最佳工艺条件下,获得了99.5%的脱氯率,为有机氯化物脱氯开辟了一条新途径.  相似文献   

10.
OCDD and OCDF spiked silica/graphite based model fly ash containing various copper compounds and metal oxides were thermally treated under oxygen deficient conditions. All copper compounds tested showed a considerable dechlorination/hydrogenation reaction at 260 °C. After 30 min at 340 °C, less than 1% of the spiked OCDD and OCDF was recovered as T4CDD/F to OCDD/F. Other compounds tested demonstrated a lower rate of dechlorination compared to the copper compounds. However, all other metal oxides showed a small dechlorination effect at 260 °C, which was considerably increased at 340 °C.

The model fly ash containing the different copper compounds or metal oxides showed comparable PCDD and PCDF isomer patterns after thermal treatment. However, small differences were observed among the different tested compounds. The PCDD and PCDF isomer patterns on the model fly ashes were similar to patterns found during dechlorination experiments on fly ashes from waste incineration processes.

Model fly ash containing Ca(OH)2 exhibited the highest destruction potential, but a low dechlorination potential. In contrast, model fly ash containing any of the remaining compounds tested, was found to predominantly dechlorinate the spiked OCDD and OCDF.  相似文献   


11.
Polychlorinated biphenyls (PCBs) pose a threat to the environment due to their high adsorption capacity to soil organic matter, stability and low reactivity, low water solubility, toxicity and ability to bioaccumulate. With Icelandic soils, research on contamination issues has been very limited and no data has been reported either on PCB degradation potential or rate. The goals of this research were to assess the bioavailability of aged PCBs in the soils of the old North Atlantic Treaty Organization facility in Keflavík, Iceland and to find the best biostimulation method to decrease the pollution. The effectiveness of different biostimulation additives (N fertiliser, white clover and pine needles) at different temperatures (10 and 30 °C) and oxygen levels (aerobic and anaerobic) were tested. PCB bioavailability to soil fauna was assessed with earthworms (Eisenia foetida). PCBs were bioavailable to earthworms (bioaccumulation factor 0.89 and 0.82 for earthworms in 12.5 ppm PCB soil and in 25 ppm PCB soil, respectively), with less chlorinated congeners showing higher bioaccumulation factors than highly chlorinated congeners. Biostimulation with pine needles at 10 °C under aerobic conditions resulted in nearly 38 % degradation of total PCBs after 2 months of incubation. Detection of the aerobic PCB degrading bphA gene supports the indigenous capability of the soils to aerobically degrade PCBs. Further research on field scale biostimulation trials with pine needles in cold environments is recommended in order to optimise the method for onsite remediation.  相似文献   

12.
MR Cull  AJ Dobbs 《Chemosphere》1984,13(9):1091-1099
Wood samples treated with technical pentachlorophenol (PCP), technical sodium pentachlorophenoxide (NaPCP) and octachlorodibenzo-p-dioxin have been exposed outdoors for periods up to 212 years. Analysis of extracts from the samples show that photolytic reductive dechlorination of highly chlorinated dibenzo-p-dioxins to less chlorinated isomers occurs. However there is no discernible increase in polychlorodibenzo-p-dioxin concentrations in the technical PCP treated wood presumably because further photolytic reactions and volatilisation compete effectively with the photolytic formation. There is no evidence for formation of octachlorodibenzo-p-dioxin (OCDD) in technical PCP treated wood in this study, probably because photolytic destruction and volatilisation compete effectively with formation reactions when the initial OCDD concentration is relatively high.  相似文献   

13.
Kang WH  Hwang I  Park JY 《Chemosphere》2006,62(2):285-293
This study aims to assess the feasibility of using slag, byproduct from iron and steel making industries, as a new reactive material for dechlorination reactions and to investigate dechlorination chemistries of the systems containing the slag and Fe(II). Initially, screening experiments were conducted to evaluate various systems containing slags with or without Fe(II). A combination of the steel converter slag and Fe(II) showed a potential to be developed as a reactive material to treat chlorinated organics. Further kinetic studies with the steel converter slag/Fe(II) systems revealed that the dechlorination capacity of the slag/Fe(II) system is comparable to that of zero-valent iron and generally higher than the cement/Fe(II) system. The slag/Fe(II) system can substantially dechlorinate trichloroethylene (TCE) in the neutral pH region, although the dechlorination rate was greatest in the pH region between 12 and 13. TCE reductions in the slag/Fe(II) system were observed to occur through reductive beta-elimination pathways that produce primarily acetylene and no chlorinated intermediates such as vinyl chloride. These results demonstrate that the steel converter slag with Fe(II) has sound characteristics for an alternative reactive medium for subsurface remediation.  相似文献   

14.
Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) are a group of halogenated hydrocarbons, comprising 210 different, theoretically possible congeners. They are relatively hydrophobic and persistent to biodegradation, thereby rendering them subject to bioaccumulation. This study was conducted in Frierfjord and Eidangerfjord in the Grenland fjord system, Norway, heavily polluted by PCDD/PCDF discharges from the magnesium production at Herøya from 1951 to 2001. Pooled samples of surface-sediments and the following organisms were collected for the Frierfjord and Eidangerfjord study areas: common shrimp (Crangon crangon), polychaetes (mainly Nereis diversicolor), shore crab (Carcinus maenas), cod (Gadus morhua), flounder (Platichthys flesus), trout (Salmo trutta), herring (Clupea harengus), benthic amphipods and zooplankton. Concentrations of 2,3,7,8-PCDD/Fs were quantified in pooled samples for all species. The relative abundances of stable isotopes of nitrogen (δ15N) were evaluated in the organisms as a measure of chemically-derived trophic level. Contrary to earlier studies on other persistent organochlorines, it was found that the concentrations of PCDD/Fs declined with increasing trophic level. Principal Component Analysis (PCA) also showed differences between species in the pattern of PCDD/Fs. Higher chlorinated congeners constituted lower percentages of the PCDD/F-concentrations higher in the food chain as compared to lower trophic levels. In general, congener patterns did not differ between fjords. Infauna (polychaetes) and zooplankton had congener patterns most similar to the pollution source. The results indicate lower accumulation of higher chlorinated congeners in species at higher trophic levels (fish), presumably due to low membrane permeability (high molecular size) and possibly slow transport through intestinal aqueous phases because of low aqueous solubility.  相似文献   

15.
A modified procedure for the synthesis of polychlorinated biphenyls (PCBs) utilizing the Suzuki-coupling, a palladium-catalyzed cross-coupling reaction, is described. The coupling of (chlorinated) benzene boronic acids with bromochlorobenzenes, using Pd(dppf)(2)Cl(2) (dppf = 1,1'-bis(diphenylphosphino)ferrocene) as the catalyst and aqueous sodium carbonate as the base, gave the desired PCB congeners in moderate to good yields. Eleven PCB congeners, including environmentally important PCB congeners and metabolites, were synthesized using this modified procedure. This new catalyst Pd(dppf)(2)Cl(2) offers the advantage of being less air-sensitive and has a longer shelf life compared to Pd(PPh(4))(4). Three new (di-)methoxylated PCB congeners were synthesized using the same procedure by either coupling a chlorinated benzene boronic acid with a bromo (di-)methoxybenzene or by coupling a (di-)methoxy benzene boronic acid with a chlorinated bromobenzene. The dimethoxylated PCB congeners were readily converted into the respective dihydroxylated PCB derivatives using boron tribromide in dichloromethane. This approach offers the advantage of high selectivity and moderate to good yields compared to conventional methods such as the Cadogan reaction and allows the use of less toxic starting materials.  相似文献   

16.
Chen IM  Chang FC  Wang YS 《Chemosphere》2001,45(2):223-229
To understand the dechlorination ability of chlorobenzenes (CBs) and polychlorinated biphenyls (PCBs) by untamed microorganisms under anaerobic condition and to correlate gas chromatographic properties with the occurrence of reductive dechlorination, introduction of CBs and PCBs in the culture medium inoculated with microorganisms from sludge and sediment, respectively, were performed. Three kinds of culture media preparing from sludge, river water and a synthetic medium were used in the experiments. HCB was degraded to 1,3,5-trichlorobenzene (1,3,5-TCB) and 1,3-dichlorobenzene (1,3-DCB) in both sludge medium and synthetic medium with inoculated microorganisms. Three PCB congeners including 2,3,4-, 3,4,5- and 2,3,4,5-CBp (chlorinated biphenyl) were not found to be dechlorinated in the river water medium with inoculation culture but to be dechlorinated in the synthetic medium. MNDO methodology was used to compute theoretical dechlorination reaction heats and GC-ECD techniques were used to estimate chromatographic data of CB and PCB congeners. Both CB and PCB congeners showed that dechlorination by untamed microorganisms under anaerobic mixed cultures were more likely to occur when larger amounts of energy were released and greater deltaln RRT value between the parent congener and the daughter product was observed. Deltaln RRT provided a more precise information on the singularity of PCBs ortho-dechlorination in an aspect of thermodynamic favorable rule.  相似文献   

17.
The composition of persistent organochlorine compounds (OC) in soils and sediments from two high altitude European mountain lakes, Redon in the Pyrenees and Ladove in the Tatra mountains, has been studied. Sediment cores from two additional lakes in the Tatra mountains, Starolesnianske Pleso and Dlugi Staw, have also been examined. DDTs (1.7-13 ng g(-1)) were the most abundant OC in soils followed by total polychlorobiphenyls (PCBs; 0.41-1.5 ng g(-1)) and hexachlorobenzene (HCB; 0.15-0.91 ng g(-1)). In sediments, the dominant OC were also DDTs (3.3-28 ng g(-1)) and PCBs (2.3-15 ng g(-1)). These concentrations are low, involving absence of major pollution sources in these high mountain regions. The downcore OC profiles in soils and sediments were similar but higher concentrations and steeper vertical gradients were observed in the latter. Radiometric determinations showed absence of significant OC transport from catchment to lake. The sediment-soil difference points therefore to a better retention of the OC load in sediments than soils which may be related to the low temperatures that are currently encountered at the bottom of the lake water column and the depletion of sediment bioturbation in these cold environments. Significant qualitative changes in the soil PCB distributions are observed downcore. These involve a dominance of the high molecular weight congeners in the top core sections and those of lower weight (i.e. less chlorinated) in the bottom. Anaerobic dechlorination of higher molecular weight congeners occurring in microsites, e.g. as observed in flooded or poorly drained soils, could be responsible for these changes. This process could be concurrent to bioturbation.  相似文献   

18.
Abiotic reductive dechlorination of chlorinated ethylenes by soil   总被引:3,自引:0,他引:3  
Lee W  Batchelor B 《Chemosphere》2004,55(5):705-713
Abiotic reductive dechlorination of chlorinated ethylenes by soil in anaerobic environments was characterized to improve knowledge of the behavior of chlorinated ethylenes in natural systems, including systems modified to promote attenuation of contaminants. Target organics in the soil suspension reached sorption equilibrium in 2 days and the sorption isotherm of target organics was properly described by the linear sorption model. A modified Langmuir-Hinshelwood model was developed to describe the kinetics of reductive dechlorination of target organics by soil. The rate constants for the reductive dechlorination of chlorinated ethylenes at the reactive surfaces of reduced soils were found in the range between 0.055 (+/- 8.9%) and 2.60 (+/- 3.2%) day(-1). The main transformation products in reduced soil suspensions were C2 hydrocarbons. No chlorinated intermediates were observed at concentrations above detection limits. Five cycles of reduction of the soil followed by oxidation of the soil with trichloroethylene (TCE) did not affect the removal of TCE. The removal was affected by the reductants used and increased in the order: Fe(II) < dithionite < Fe(II) + dithionite.  相似文献   

19.
Meneses M  Schuhmacher M  Domingo JL 《Chemosphere》2002,46(9-10):1393-1402
The vegetation and soil levels of the 17 polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) toxic congeners were calculated by means of a vegetation and a soil model, respectively. Both models predicted the levels of the 17 PCDD/F congeners in quite good agreement with the observed results although the soil model was more accurate than the vegetation model. Four different pathways of contribution to the vegetation concentrations were taken into account: vapour-phase absorption, dry particle deposition, wet particle deposition and uptake by root. The most important pathway was the vapour-phase absorption and the less was the uptake by root. In the soils model four pathways were considered: background soil concentration, dry particle deposition, wet particle deposition and uptake by root. After the background concentration, the most important pathway was the wet deposition.  相似文献   

20.
The microbial dechlorination of seven kinds of polychlorinated biphenyls (PCBs) by anaerobic microorganisms from river sediment was investigated. Dechlorination rates were found to be affected by the chlorine level of PCB congeners; dechlorination rates decreased as chlorine levels increased. Dechlorination rates were fastest under methanogenic conditions and slowest under nitrate-reducing conditions. The addition of individual electron donors (acetate, pyruvate, and lactate) enhanced the dechlorination of PCB congeners under methanogenic and sulfate-reducing conditions but delayed the dechlorination of PCB congeners under nitrate-reducing conditions. PCB congener dechlorination also was delayed by the addition of various polycyclic aromatic hydrocarbons (PAHs) under three reducing conditions and by surfactants, such as brij30, triton SN70, and triton N101. The results suggest that methanogen, sulfate-reducing bacteria, and nitrate-reducing bacteria all are involved in the dechlorination of PCB congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号