首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human exposure to ambient ozone (O3) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source–receptor relationships between nitrogen oxides (NOx) emissions and population exposure to ambient O3 in 48 states over the continental United States. By removing NOx emissions from each state one at a time, we calculate the change in O3 exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source–receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NOx emissions from upwind states contribute more to O3 exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O3 exposures in 90% of U.S. states. A state's NOx emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O3 exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O3 exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NOx is equal. In this study, the average O3 exposures caused by one ton of NOx emissions ranges from ? 2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NOx emissions varies considerably over space.  相似文献   

2.
We estimated PM2.5-related public health impacts/ton emitted of primary PM2.5, SO2, and NOx for a set of power plants in the Mid-Atlantic and Lower Great Lakes regions of the United States, selected to include varying emission profiles and broad geographic representation. We then developed a regression model explaining variability in impacts per ton emitted using the population distributions around each plant. We linked outputs from the Community Multiscale Air Quality (CMAQ) model v 4.7.1 with census data and concentration–response functions for PM2.5-related mortality, and monetized health estimates using the value-of-statistical-life. The median impacts for the final set of plants were $130,000/ton for primary PM2.5 (range: $22,000–230,000), $28,000/ton for SO2 (range: $19,000–33,000), and $16,000/ton for NOx (range: $7100–26,000). Impacts of NOx were a median of 34% (range: 20%–75%) from ammonium nitrate and 66% (range: 25%–79%) from ammonium sulfate. The latter pathway is likely from NOx enhancing atmospheric oxidative capacity and amplifying sulfate formation, and is often excluded. Our regression models explained most of the variation in impact/ton estimates using basic population covariates, and can aid in estimating impacts averted from interventions such as pollution controls, alternative energy installations, or demand-side management.  相似文献   

3.
BackgroundAir pollution benefits assessments tend to be time and resource intensive. Reduced-form approaches offer computational efficiency, but may introduce uncertainty. Some reduced-form approaches apply simplified air quality models, which may not capture the complex non-linear chemistry governing the formation of certain pollutants such as PM2.5. Other approaches apply the results of sophisticated photochemical modeling, but characterize only a small number of source types in a limited geographic area.MethodsWe apply CAMx source apportionment photochemical modeling, coupled with a PC-based human health benefits software program, to develop a suite of PM2.5 benefit per ton estimates. These per-ton estimates relate emission changes to health impacts and monetized benefits for 17 sectors across the continental U.S., including Electricity Generating Units (EGU), mobile, area and industrial point sources.ResultsThe benefit per ton of reducing directly emitted PM2.5 is about an order of magnitude larger than reducing emissions of PM2.5 precursor emissions. On a per-ton basis, the value of reducing directly emitted PM2.5 and PM2.5 precursors in 2005 ranges between approximately $1300 (2010$) for reducing a ton of NOx from Ocean-Going Vessels to about $450,000 (2010$) for reducing a ton of directly emitted PM2.5 from Iron and Steel facilities. The benefit per ton estimates for 2016 are generally higher than the 2005 estimates. The values estimated here are generally comparable with those generated using photochemical modeling, but larger than those calculated using simplified air quality models.ConclusionsOur approach characterizes well the per-ton benefits of reducing emissions from a broad array of 17 industrial point, EGU and mobile sectors, while our use of photochemical air quality modeling gives us greater confidence that we have accounted for the non-linear chemistry governing PM2.5 formation. The resulting benefit per-ton estimates thus represent a compromise between approaches that may simplify the treatment of PM2.5 air quality formation and those techniques that are based in photochemical modeling but account for only a small number of emission sources.  相似文献   

4.
This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO2), particulate matter (PM), nitrogen dioxide (NO2), ozone (O3), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region.The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO2 and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO2 (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14–30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14–30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO2 concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NOx ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.  相似文献   

5.
Abstract

Monitoring data from ozone(O3 automatic stations in three typical cities with different climatic areas in the southern and northern parts of eastern China are used to analyze temporal and spatial characteristics of ozone pollution at ground level. The results show that ozone pollution level has distinct regional differences and the concentration in the suburbs is higher than that in the urban areas. The seasonal variation of ozone concentration in different climatic areas is greatly affected by the variation of precipitation. Ozone concentration in Shenyang and Beijing, in the temperate zone, has one perennial peak concentration, occurring in early summer, May or June. Ozone concentration in Guangzhou, in sub-tropical zone, has two peak values year round. The highest values occur in October and the secondary high value in June. The ozone season in the south is longer than that in the north. The annual average daily peak value of ozone concentrations in different climates usually occur around 3 pm. The diurnal variation range of ozone concentration declines with the increase of latitude. Ozone concentration does not elevate with the increase of traffic flow. Ozone concentration in Guangzhou has a distinct reverse relation to CO and NOx. This complicated non-linearity indicates that the equilibrium of ozone photochemical reaction has regional differences. Exceeding the rate of Beijing's 1h ozone concentration is higher than that of Guangzhou, whereas the average 8h ozone level is lower than that of Guangzhou, indicating that areas in low latitude are more easily affected by moderate ozone concentrations and longer exposure. Thus, China should work out standards for 8h ozone concentration.  相似文献   

6.
Long-term (1975–1981) and short-term (1980–1981) national and regional trends in ozone (O3) are examined. The data used in this paper come from the U.S. Environmental Protection Agency's National Aerometric Data Bank (NADB). Air quality trends are presented for both the National Air Monitoring Sites (NAMS) and all other sites meeting the historical and data completeness criteria. Nationally, the composite average of the second-highest daily maximum 1-h O3 values recorded at 209 sites decreased 14% between 1975 and 1981. An even greater improvement was observed in the estimated number of exceedances in the ozone season (July–September), which decreased 42%. Volatile organic compound (VOC) emissions decreased 9% during the same time period. The greater improvement observed in ozone levels appears to be a combination of reductions in VOC emissions and the change in the calibration procedure which took place between 1978 and 1979. Between 1980 and 1981, the majority of the 159 monitoring sites with data in both years decreased with a median rate of improvement of 8%. This is consistent with the 7% drop in VOC emissions during this period.  相似文献   

7.
The purpose of this study is to evaluate the effect of reductions of reactive organic gases (ROG) and NOx emissions on short-term O3 and NO2 concentrations and annual average NO2 concentrations in the California South Coast Air Basin. Short-term air quality predictions were obtained by applying the Systems Applications Airshed Model to summer O3 and autumn NO2 episodes. Effects of emission controls on annual NO2 concentrations were estimated using CDM and a new parcel tracking model NOXTRAK. Results for the summer O3 episode indicate that ROG emission reduction in an effective means for reducing peak O3 concentrations. NOx emission reduction imposed in addition to ROG emission reductions are counterproductive in reducing peak O3 concentrations. The modeling results also suggest that attainment of the 1-h federal O3 standard requires ROG emission reductions on the order of 80% from 1987 levels. Results for the autumn NO2 episode indicate that NOx emission reductions approximating those recommended in a proposed Air Quality Management Plan (about 22%) will result in only small (about 5%) reductions in the peak NO2 concentrations. ROG emission reduction may be more effective than NOx emission reduction in reducing the peak NO2 concentration. For the episode studied, a reduction of 36% in ROG emissions is estimated to result in a reduction in peak NO2 concentrations commensurate with that required to attain the 1-h state NO2 standard. Model calculations also indicate that the federal NO2 standard may not be meet by 1987 at one or two stations, but may blosely approached.  相似文献   

8.
Hydrocarbons (HC) and nitrogen oxides (NOx) have been identified as the most important precursor pollutants for oxidant formation in the atmosphere. These pollutants are emitted both from natural and anthropogenic sources; however, these two types of sources are generally geographically separated. Anthropogenic emissions are dominant in and around urban centers, where the majority of severe oxidant problems occur. Based on data gathered by the MAP3S/RAINE emissions inventory project, anthropogenic emissions of HC in the conterminous United States were 24.8 million metric tons in 1979. HC emissions were predominantly from area sources, the transportation sector being the largest contributor with 39.8% of the total. State-by-state breakdowns are also included. Based on analyses by other emissions inventory projects, the nonreactive fraction of the emissions from the transportation sector is less than 20% by weight. The highest proportion of HC emissions occur at low altitudes (0–50 m range) in high population density areas. Anthropogenic emissions of NOx were 23.7 million metric tons in 1979; 50.8% were from point sources. The transportation sector and the electric utilities sector account for 37.1% and 30.9% of the NOx emissions, respectively. The NO2 fraction of the emissions from the transportation and electric utilities sectors is less than 10% by weight, based on NO/NO2 speciation data from two other emissions inventories. Highest rates of NOx emissions occur in high population density areas and are released at low altitude (0–50 m); three areas of high electric generating capacity were found to have high release altitudes.  相似文献   

9.
The amount of several air pollutants emitted in some cities including Hangzhou, Ningbo, Huzhou, Shaoxing and Jiaxing of Zhejiang Province is based on pollution source census data of Zhejiang Province in 2010. This paper focused on the release of air pollutants such as NOx, SO2, CO, PM2.5, PM10 and VOC, and calculated the total amount of those air pollutants. It analyzed air pollutant emission factors and found that the electricity and heat production industry released the largest amount of pollutants.  相似文献   

10.
This paper describes results of a study that examined NO and NO2 formation on range-top burners and in diffusion flames. These flames were characterized by composition and temperature profiles. Range-top burner flames and pilot flames displayed qualitatively similar behavior with respect to the kinds of flame regions in which relatively high NO2/NO ratios were identified. These regions of high NO2/NO ratios were consistently either regions of low oxygen concentration or flame surfaces subjected to thermal quenching. A limited series of experiments with modified burners indicated that reduced emissions from both the RTB and pilot flames could be achieved by (1) improved primary aeration, using 50% or greater primary air, and (2) using flame geometries designed to minimize flame surface, e.g., flat-flame burners or other designs having effectively fewer distinct ports. Both NO and NO2 are readily produced in diffusion and partially premixed Bunsen-type flames, mainly in the vicinity of the hot visible zone. High NO2/NO ratios are associated with the cooler regions of the flame, as, for example, at the base of the flame in the highly diluted downstream region and in the fuel-rich regions of the flames. A simplified reaction mechanism based on CN and NH radicals being oxidized to NO followed by NO + HO2 → NO2 + OH appears to explain the high NO2/NO ratios observed. A practical implication of the study is that a burner designed with improved aeration and mixing minimization of flame surface should emit less NO2.  相似文献   

11.
12.
Using integrating NO2 diffusion dosimeters, personal, indoor and outdoor exposures were measured for nine families in Topeka, Kansas. NO2 exposures in homes that used gas for cooking were clearly different from those in homes that used electricity. The gas-cooking homes had indoor levels three times the outdoor levels. Members of the gas-cooking households had levels twice those of electric-cooking families and twice the outdoor levels. A linear model that includes outdoor concentrations and stove types explains 77% of the variance in observed NO2 exposure. The differential NO2 exposures in homes with and without gas stoves should be considered in epidemiologic studies of the health effects of air pollution.  相似文献   

13.
The main objective of this work is to control the NOx emission of a stationary diesel engine fuelled with crude rice bran oil methyl ester blend with less sacrifice on smoke density and brake thermal efficiency (BTE) and also to investigate the factors influencing the objective. Fuel injection timing, percentage of exhaust gas recirculation and fuel injection pressure are chosen as the promising factors for the objective and NOx emission, smoke density and BTE are considered as response variables. Tests were conducted as per Taguchi’s L9 orthogonal array and the most influencing factor for each response variable and also the significance of each factor on the same was found out through analysis of variance (ANOVA). Response graph was drawn for each response variable and from the results of response graph and ANOVA the optimum combination of the factor levels in achieving the objective was obtained and the same was confirmed experimentally.  相似文献   

14.
Since the air pollution as measured by stationary monitoring stations is a poor indicator of the population exposure, personal monitors are indispensible to health effects studies. This article reviews the current research on the development of personal monitors. Although most of the analytical methods reviewed in this study appear to be sensitive to the levels of the target pollutants NO2, SO2, and O3 generally encountered in indoor and outdoor air, they lack the desired performance characteristics for a personal monitoring device, such as user safety and ease of operation, weight, and maintenance. Electrochemical transducers/sensors, which have not yet been exploited, are attractive candidates for the application to personal monitoring. This technique has an added feature of generating real-time measurements. A few research models and commercially attractive devices that can be used in field studies are included.  相似文献   

15.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines have caused an interest in finding alternative fuels to diesel which are renewable and sustainable. Emission control and engine efficiency are two most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V is forcing the research towards developing new technologies for combating engine emissions. The classification of Euro IV and V norms is applicable to heavy-duty engines in Europe, where as Euro 5 is applicable to light-duty engines. This paper presents the effects of exhaust gas recirculation (EGR), swirl augmentation techniques and ethanol addition on the combustion of Honge oil methyl ester (HOME) and its blends with ethanol in a diesel engine. From the experimental work conducted, it is found that the combustion of HOME plus up to 15% ethanol blend in a diesel engine operated with optimised parameters of injection timing 23° Before Top Dead Centre and compression ratio 17.5 results in acceptable combustion emissions and improved brake thermal efficiency (BTE). The addition of ethanol increased BTE with reduced hydrocarbons (HCs), CO and smoke emissions. However, NO x emissions increased dramatically. Use of appropriate EGR reduces NO x to acceptable levels. The implementation of swirl augmentation techniques further resulted in increased BTE and considerable reduction in tail pipe emissions such as smoke, HCs, CO and NO x . The effect of swirl by providing grooves on the piston was taken into consideration to find the overall biodiesel engine performance, which gives scope for further studies.  相似文献   

16.
A badge-type personal sampler was developed for measuring personal exposure to nitrogen dioxide (NO2). An absorbent sheet containing triethanolamine (TEA) solution absorbed NO2 which diffused through five layers of hydrophobic fiber filter. Wind effects on absorption rate were suppressed by these filter layers. NO2 was measured by the sampler with a sensitivity of 124.8 μg h/m3 (66 ppb h) and an accuracy of within ± 20%. It could be used for measuring personal exposure to NO2 without interfering with the wearer's daily activities. Nitric oxide (NO) could be measured after a small modification to the sampler provided oxidation ability to the layers of diffusion filter. Three layers of hydrophobic fiber filter were replaced by 12 layers of glass fiber filter containing chromium trioxide solution. NO was oxidized to NO2 in the oxidation layers and absorbed by the absorbent sheet together with the coexisting NO2. Sensitivity and accuracy of the sampler for NO were nearly equal to that for NO2.  相似文献   

17.
Long-term exposure to ambient air pollution can lead to chronic health effects such as cancer, cardiovascular and respiratory disease. Systemic inflammation has been hypothesized as a putative biological mechanism contributing to these adverse health effects. We evaluated the effect of long-term exposure to air pollution on blood markers of systemic inflammation.We measured a panel of 28 inflammatory markers in peripheral blood samples from 587 individuals that were biobanked as part of a prospective study. Participants were from Varese and Turin (Italy) and Umea (Sweden). Long-term air pollution estimates of nitrogen oxides (NOx) were available from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Linear mixed models adjusted for potential confounders were applied to assess the association between NOx and the markers of inflammation.Long-term exposure to NOx was associated with decreased levels of interleukin (IL)-2, IL-8, IL-10 and tumor necrosis factor-α in Italy, but not in Sweden. NOx exposure levels were considerably lower in Sweden than in Italy (Sweden: median (5th, 95th percentiles) 6.65 μg/m3 (4.8, 19.7); Italy: median (5th, 95th percentiles) 94.2 μg/m3 (7.8, 124.5)). Combining data from Italy and Sweden we only observed a significant association between long-term exposure to NOx and decreased levels of circulating IL-8.We observed some indication for perturbations in the inflammatory markers due to long-term exposure to NOx. Effects were stronger in Italy than in Sweden, potentially reflecting the difference in air pollution levels between the two cohorts.  相似文献   

18.
The chemical characteristics of precipitation were analyzed based on the chemical composition of principal ionic within acid rain(from February 2007 to January 2008)of Liaozhong Meteorological Station located in Malong Village in Liaozhong County of Northeast China,meteorological conditions on the corresponding period ground,and variation of several air pollutants concentration.The results indicated that:(1)The precipitation average pH value of all samples was4.76;the frequency of acid rain during the observation period was 70.7%;the frequency was 82.8%in summer and autumn.(2)In the chemical composition of precipitation,the primary anions were SO42-and NO3-;the primary cations were NH4+and Ca2+.(3)All concentration of anions was higher in summer and winter,but relatively low in spring and autumn.This showed that the relationship between regional rainfall acidification and pollution was not significant.(4)Rainwater acidity and nearly floor gaseous pollution concentration were different from each other,and pH and NOx,CO,NO2 and O3concentrations showed significant negative correlation,but was not obvious with SO2 concentration.However,the pH and alkaline pollutants,such as particulate,was positively correlative.  相似文献   

19.
Karanja oil methyl ester (KOME), a biodiesel prepared from Karanja oil, a potential source of non-edible oil in India and a prospective alternative to the diesel fuel, shows comparable performance and considerable reduction in emissions except NOx. Exhaust gas recirculation (EGR) is a popular method of reducing the NOx emission. The aim of this experimental work was to study the potential of the cooled EGR in a direct injection compression ignition engine operating with the KOME and its blend. The study was conducted with the different EGR rates. Performance and emission parameters were compared by using diesel, KOME and its blend employing EGR and with the same fuels without EGR. The study also differentiates the effect of EGR on KOME and its blend with the neat diesel. The effect of EGR was found to be slightly higher for KOME biodiesel and its blend than for neat diesel. Increased NOx emission using KOME biodiesel was also found to be reduced by using EGR.  相似文献   

20.
Acute respiratory infections are common in children below 5 years and recent studies suggest a possible link with air pollution. In this study, we investigated the association between ambient nitrogen oxides (NOx) and bronchitis or upper airway inflammation.This longitudinal study was conducted in Teplice and Prachatice districts, Czech Republic. Children were followed from birth to 4.5 years of age. Data were compiled from medical records at delivery and at follow up, and from self-administered questionnaires from the same two time points. Air pollution monitoring data were used to estimate exposure over five different averaging periods ranging from three to 45 days prior to an episode. To quantify the association between exposure and outcome, while accounting for repeated measure correlation we conducted logistic regression analysis using generalized estimating equations.During the first 2 years of life, the adjusted rate ratio for bronchitis associated with interquartile increase in the 30-day average NOx was 1.31 [95% confidence interval (CI): 1.07, 1.61] and for two to 4.5 year olds, it was 1.23 (95% CI: 1.01, 1.49). The 14-day exposure also had stable association across both age groups: below 2 years it was 1.25 (95% CI: 1.06, 1.47) and for two to 4.5 years it was 1.21 (95% CI: 1.06, 1.39). The association between bronchitis and NOx increased with child's age in the under 2 years group, which is a relatively novel finding.The results demonstrate an association between NOx and respiratory infections that are sufficiently severe to come to medical attention. The evidence, if causal, can be of public health concern because acute respiratory illnesses are common in preschool children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号