首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Guanabara Bay (GB), located in the Rio de Janeiro State, is still a productive estuary on the south-eastern Brazilian coast. It is an ecosystem heavily impacted by organic matter, oil and a number of other toxic compounds, including Hg. The present study aimed to comparatively evaluate the aquatic total mercury (THg) and MeHg contamination, and the ratios of MeHg to THg (% MeHg), in 3 species of marine organisms, Micropogonias furnieri-carnivorous fish (N = 81), Mugil spp.--detritivorous fish (N = 20) and Perna perna--filter-feeding bivalves (N = 190), which are widely consumed by the population. A total of 291 specimens were collected at the bay in different periods between 1988 and 1998. THg concentrations were determined by cold vapour AAS with stannous chloride as a reducing agent. MeHg was extracted by dithizone-benzene and measured by GC-ECD. Analytical quality was checked through certified standards. All organisms presented both low THg and MeHg concentrations and they were below the maximum limit of 1,000 micrograms Hg.kg-1 wet wt. as established for human intake of predatory fish by the new Brazilian legislation. Carnivorous fish showed higher THg and MeHg concentrations, and also % MeHg in muscle tissues, than organisms with other feeding habits and lower trophic levels. The average of THg concentrations in carnivorous fish was 108.9 +/- 58.6 micrograms.kg-1 wet wt. (N = 61) in 1990 and 199.5 +/- 116.2 micrograms.kg-1 wet wt. (N = 20) in 1998, but they presented different total length and body weights. The average THg content in detritivorous fish was 15.4 +/- 5.8 micrograms.kg-1 wet wt., whereas THg concentrations ranged from 4.1 to 53.5 micrograms.kg-1 wet wt. for the molluscs. The THg and MeHg contents of mussel varied according to the sampling point and water quality. MeHg concentration in detritivorous fish was similar to MeHg concentration in molluscs, but there was a significant difference in the MeHg/THg ratio: the carnivorous fish presented higher MeHg percentages (98%) than the detritivorous fish (54%) and the molluscs (33%). Weight-normalised average concentration of THg in carnivorous fish collected in 1990 (0.18 +/- 0.08 microgram.g-1/0.7 kg wet wt.) and in 1998 (0.16 +/- 0.09 microgram.g-1/0.7 kg wet wt.) presented no significant difference (t = 1.34; P < 0.5). In conclusion, the low THg and MeHg concentrations in the organisms from the GB ecosystem, are related to its eutrophic conditions and elevated amounts of suspended matter. In this situation, Hg could be strongly complexed or adsorbed by the particulate, which would dilute the Hg inputs and reduce its residence time in the water column, with a consequent decrease in its availability to organisms.  相似文献   

2.
Background, aim, and scope  Selenium (Se) has been shown to reduce mercury (Hg) bioavailability and trophic transfer in aquatic ecosystems. The study of methylmercury (MeHg) and Se bioaccumulation by plankton is therefore of great significance in order to obtain a better understanding of the estuarine processes concerning Hg and Se accumulation and biomagnification throughout the food web. In the western South Atlantic, few studies have documented trace element and MeHg in fish tissues. No previous study about trace elements and MeHg in plankton has been conducted concerning tropical marine food webs. Se, Hg, and MeHg were determined in two size classes of plankton, microplankton (70–290 μm) and mesoplankton (≥290 μm), and also in muscle tissues and livers of four fish species of different trophic levels (Mugil liza, a planktivorous fish; Bagre spp., an omnivorous fish; Micropogonias furnieri, a benthic carnivorous fish; and Centropomus undecimalis, a pelagic carnivorous fish) from a polluted estuary in the Brazilian Southeast coast, Guanabara Bay. Biological and ecological factors such as body length, feeding habits, and trophic transfer were considered in order to outline the relationships between these two elements. The differences in trace element levels among the different trophic levels were investigated. Materials and methods  Fish were collected from July 2004 to August 2005 at Guanabara Bay. Plankton was collected from six locations within the bay in August 2005. Total mercury (THg) was determined by cold vapor atomic absorption spectrometry (CV-AAS) with sodium borohydride as a reducing agent. MeHg analysis was conducted by digesting samples with an alcoholic potassium hydroxide solution followed by dithizone-toluene extraction. MeHg was then identified and quantified in the toluene layer by gas chromatography with an electron capture detector (GC-ECD). Se was determined by AAS using graphite tube with Pin platform and Zeeman background correction. Results and discussion  Total mercury, MeHg, and Se increased with plankton size class. THg and Se values were below 2.0 and 4.8 μg g−1 dry wt in microplankton and mesoplankton, respectively. A large excess of molar concentrations of Se in relation to THg was observed in both plankton size class and both fish tissues. Plankton presented the lowest concentrations of this element. In fish, the liver showed the highest THg and Se concentrations. THg and Se in muscle were higher in Centropomus undecimalis (3.4 and 25.5 nmol g−1) than in Micropogonias furnieri (2.9 and 15.3 nmol g−1), Bagre spp (1.3 and 3.4 nmol g−1) and Mugil liza (0.3 and 5.1 nmol g−1), respectively. The trophic transfer of THg and Se was observed between trophic levels from prey (considering microplankton and mesoplankton) to top predator (fish). The top predators in this ecosystem, Centropomus undecimalis and Micropogonias furnieri, presented similar MeHg concentrations in muscles and liver. Microplankton presented lower ratios of methylmercury to total mercury concentration (MeHg/THg) (34%) than those found in mesoplankton (69%) and in the muscle of planktivorous fish, Mugil liza (56%). The other fish species presented similar MeHg/THg in muscle tissue (of around 100%). M. liza showed lower MeHg/THg in the liver than C. undecimalis (35%), M. furnieri (31%) and Bagre spp. (22%). Significant positive linear relationships were observed between the molar concentrations of THg and Se in the muscle tissue of M. furnieri and M. liza. These fish species also showed significant inverse linear relationships between hepatic MeHg and Se, suggesting a strong antagonistic effect of Se on MeHg assimilation and accumulation. Conclusions  Differences found among the concentrations THg, MeHg, and Se in microplankton, mesozooplankton, and fishes were probably related to the preferred prey and bioavailability of these elements in the marine environment. The increasing concentration of MeHg and Se at successively higher trophic levels of the food web of Guanabara Bay corresponds to a transfer between trophic levels from the lower trophic level to the top-level predator, suggesting that MeHg and Se were biomagnified throughout the food web. Hg and Se were positively correlated with the fish standard length, suggesting that larger and older fish bioaccumulated more of these trace elements. THg, MeHg, and Se were a function of the plankton size. Recommendations and perspectives  There is a need to assess the role of selenium in mercury accumulation in tropical ecosystems. Without further studies of the speciation of selenium in livers of fishes from this region, the precise role of this element, if any, cannot be verified in positively affecting mercury accumulation. Further studies of this element in the study of marine species should include liver samples containing relatively high concentrations of mercury. A basin-wide survey of selenium in fishes is also recommended.  相似文献   

3.
Bonzongo JC  Lyons WB 《Ambio》2004,33(6):328-333
Mercury (Hg) concentrations above levels that could pose health risks have been measured recently in predatory fish from many aquatic systems in the southeastern region of the United States. Based on hypotheses derived from published experimental data on the aqueous geochemistry of Hg, we investigated the effect of certain natural and human-imposed conditions on in situ levels of methylmercury (MeHg) in the Mobile-Alabama River System (MARS). Water samples were collected from different types of environments, hypothesized to have contrasting levels of MeHg in the aqueous phase, and were analyzed for total-Hg (THg) and MeHg concentrations, as well as some key geochemical parameters. The results showed the following. i) Overall, total Hg concentrations in waters of the MARS are quite uniformly distributed and vary from 0.2 to 6 ng L(-1), suggesting that besides geological sources, atmospheric deposition is certainly the main source of Hg inputs in the studied system. ii) In locations with comparable THg levels, the Hg fraction present as MeHg was consistently higher in samples collected from the Coastal Plain portion of the MARS as compared to those from other geological provinces. iii) Our in situ observations confirmed conclusions derived from laboratory experiments, in that, MeHg abundance in aquatic systems correlates with sulfate (but only within a narrow range of concentrations); decreasing pH; and has no direct relationships with either nitrate or phosphate. iv) The investigation of Hg accumulation in biota at a single site showed that an aquatic system with low THg concentrations but a high MeHg:THg ratios, could have organisms with Hg content above safe levels. Therefore, potential health risks to fish eating populations can exist even when the aqueous phase does not show signs of significant Hg enrichment.  相似文献   

4.
We analyzed Hg species distribution patterns among ecosystem compartments in the Everglades at the landscape level in order to explore the implications of Hg distribution for Hg bioaccumulation and to investigate major biogeochemical processes that are pertinent to the observed Hg distribution patterns. At an Everglade-wide scale, THg concentrations were significantly increased in the following order: periphyton相似文献   

5.
Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 ± 10.6 SE ng cm−2 yr−1 for THg and 3.8 ± 1.7 SE ng cm−2 yr−1 for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 ± 30 SE ng cm−2 yr−1). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations.  相似文献   

6.
Shao D  Liang P  Kang Y  Wang H  Cheng Z  Wu S  Shi J  Lo SC  Wang W  Wong MH 《Chemosphere》2011,83(4):443-448
This study investigated total mercury (THg) and methylmercury (MeHg) concentrations in five species of freshwater fish and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The concentrations of THg and MeHg in fish pond surface sediments were 33.1-386 ng g(-1) dry wt and 0.18-1.25 ng g(-1) dry wt, respectively. The age of ponds affected the surface sediment MeHg concentration. The vertical distribution of MeHg in sediment cores showed that MeHg concentrations decreased with increasing depth in the top 10 cm. In addition, a significant correlation was observed between %MeHg and DNA from Desulfovibrionacaea or Desulfobulbus (p<0.05) in sediment cores. Concentrations of THg and MeHg in fish muscles ranged from 7.43-76.7 to 5.93-76.1 ng g(-1) wet wt, respectively, with significant linear relationships (r=0.97, p<0.01, n=122) observed between THg and MeHg levels in fish. A significant correlation between THg concentrations in fish (herbivorous: r=0.71, p<0.05, n=7; carnivorous: r=0.77, p<0.05, n=11) and corresponding sediments was also obtained. Risk assessment indicated that the consumption of largemouth bass and mandarin fish would result in higher estimated daily intakes (EDIs) of MeHg than reference dose (RfD) for both adults and children.  相似文献   

7.
It is widely recognized that wetlands, especially those rich in organic matter and receiving appreciable atmospheric mercury (Hg) inputs, are important sites of methylmercury (MeHg) production. Extensive wetlands in the southeastern United States have many ecosystem attributes ideal for promoting high MeHg production rates; however, relatively few mercury cycling studies have been conducted in these environments. We conducted a landscape scale study examining Hg cycling in coastal Louisiana (USA) including four field trips conducted between August 2003 and May 2005. Sites were chosen to represent different ecosystem types, including: a large shallow eutrophic estuarine lake (Lake Pontchartrain), three rivers draining into the lake, a cypress-tupelo dominated freshwater swamp, and six emergent marshes ranging from a freshwater marsh dominated by Panicum hemitomon to a Spartina alterniflora dominated salt marsh close to the Gulf of Mexico. We measured MeHg and total Hg (THg) concentrations, and ancillary chemical characteristics, in whole and filtered surface water, and filtered porewater. Overall, MeHg concentrations were greatest in surface water of freshwater wetlands and lowest in the profundal (non-vegetated) regions of the lake and river mainstems. Concentrations of THg and MeHg in filtered surface water were positively correlated with the highly reactive, aromatic (hydrophobic organic acid) fraction of dissolved organic carbon (DOC). These results suggest that DOC plays an important role in promoting the mobility, transport and bioavailability of inorganic Hg in these environments. Further, elevated porewater concentrations in marine and brackish wetlands suggest coastal wetlands along the Gulf Coast are key sites for MeHg production and may be a principal source of MeHg to foodwebs in the Gulf of Mexico. Examining the relationships among MeHg, THg, and DOC across these multiple landscape types is a first step in evaluating possible links between key zones for Hg(II)-methylation and the bioaccumulation of mercury in the biota inhabiting the Gulf of Mexico region.  相似文献   

8.
Mercury (Hg) contamination in piscivorous birds, especially methylmercury (MeHg), has been drawing much attention worldwide in regard to its bioaccumulation and biomagnification in food chains. In this study on Hg in the soft tissues of white-tailed eagles (n = 22) and ospreys (n = 2) from Poland, total Hg (THg) range was 0.15–47.6 while MeHg range was 0.11–8.05 mg kg−1 dry weight. In both species, median THg and MeHg concentrations were lower in the muscle and brain than in the liver and kidney. Median nephric residues were just under 3 and 5 mgTHg kg−1 or 0.9 and 3.7 mgMeHg kg−1 for white-tailed eagle and osprey, respectively. In Norwegian data from the 1970s and in our results, MeHg in the muscle of white-tailed eagle was ~60 % THg (%MeHg = MeHg/THg × 100), lower than in other piscivorous birds. A clear similarity in THg tissue levels was found between Polish and German populations of white-tailed eagles.  相似文献   

9.
Differences in the accumulation of mercury (Hg) in five species of marine bivalves, including scallops Chlamys nobilis, clams Ruditapes philippinarum, oysters Saccostrea cucullata, green mussels Perna viridis, and black mussels Septifer virgatus, were investigated. The bivalves displayed different patterns of Hg accumulation in terms of the body concentrations of methylmercury (MeHg) and total Hg (THg), as well as the ratio of MeHg to THg. Parameters of the biodynamics of the accumulation of Hg(II) and MeHg could reflect the species-dependent Hg concentrations in the bivalves. With the exception of black mussels, we found a significant relationship between the efflux rates of Hg(II) and the THg concentrations in the bivalves. The interspecific variations in the MeHg to THg ratio were largely controlled by the relative difference between the elimination rates of Hg(II) and MeHg. Stable isotope (δ13C) analysis indicated that the five bivalve species had contrasting feeding niches, which may also affect the Hg accumulation.  相似文献   

10.
Inputs of anthropogenic mercury (Hg) to the environment have led to accumulation of Hg in terrestrial and aquatic ecosystems, contributing to fish Hg concentrations well above the European Union standards in large parts of Fennoscandia. Forestry operations have been reported to increase the concentrations and loads of Hg to surface waters by mobilizing Hg from the soil. This summary of available forestry effect studies reveals considerable variation in treatment effects on total Hg (THg) and methylmercury (MeHg) at different sites, varying from no effect up to manifold concentration increases, especially for the bioavailable MeHg fraction. Since Hg biomagnification depends on trophic structures, forestry impacts on nutrient flows will also influence the Hg in fish. From this, we conclude that recommendations for best management practices in Swedish forestry operations are appropriate from the perspective of mercury contamination. However, the complexity of defining effective policies needs to be recognized.  相似文献   

11.
The transport and fate of mercury (Hg) was studied in two forest wetlands; a riparian peatland and an abandoned beaver meadow. The proportion of total mercury (THg) that was methyl mercury (% MeHg) increased from 2% to 6% from the upland inlets to the outlet of the wetlands. During the growing season, MeHg concentrations were approximately three times higher (0.27ng/L) than values during the non-growing season (0.10ng/L). Transport of Hg species was facilitated by DOC production as indicated by significant positive relations with THg and MeHg. Elevated concentrations of MeHg and % MeHg (as high as 70%) were found in pore waters of the riparian and beaver meadow wetlands. Groundwater interaction with the stream was limited at the riparian peatland due to the low hydraulic conductivity of the peat. The annual fluxes of THg and MeHg at the outlet of the watershed were 2.3 and 0.092microg/m2-year respectively.  相似文献   

12.
The small watershed approach is well-suited but underutilized in mercury research. We applied the small watershed approach to investigate total mercury (THg) and methylmercury (MeHg) dynamics in streamwater at the five diverse forested headwater catchments of the US Geological Survey Water, Energy, and Biogeochemical Budgets (WEBB) program. At all sites, baseflow THg was generally less than 1ng L(-1) and MeHg was less than 0.2ng L(-1). THg and MeHg concentrations increased with streamflow, so export was primarily episodic. At three sites, THg and MeHg concentration and export were dominated by the particulate fraction in association with POC at high flows, with maximum THg (MeHg) concentrations of 94 (2.56)ng L(-1) at Sleepers River, Vermont; 112 (0.75)ng L(-1) at Rio Icacos, Puerto Rico; and 55 (0.80)ng L(-1) at Panola Mt., Georgia. Filtered (<0.7microm) THg increased more modestly with flow in association with the hydrophobic acid fraction (HPOA) of DOC, with maximum filtered THg concentrations near 5ng L(-1) at both Sleepers and Icacos. At Andrews Creek, Colorado, THg export was also episodic but was dominated by filtered THg, as POC concentrations were low. MeHg typically tracked THg so that each site had a fairly constant MeHg/THg ratio, which ranged from near zero at Andrews to 15% at the low-relief, groundwater-dominated Allequash Creek, Wisconsin. Allequash was the only site with filtered MeHg consistently above detection, and the filtered fraction dominated both THg and MeHg. Relative to inputs in wet deposition, watershed retention of THg (minus any subsequent volatilization) was 96.6% at Allequash, 60% at Sleepers, and 83% at Andrews. Icacos had a net export of THg, possibly due to historic gold mining or frequent disturbance from landslides. Quantification and interpretation of Hg dynamics was facilitated by the small watershed approach with emphasis on event sampling.  相似文献   

13.
Terrestrial plants and soil contain substantial amounts of organic carbon (C) and mercury. Flooding terrestrial areas stimulates microbial methyl mercury (MeHg) production and fish obtain elevated MeHg concentrations. Our purpose was to determine the loss of C, total mercury (THg), and MeHg from boreal plants and soil after burning to assess the potential of burning before flooding to lower MeHg. Fresh plants contained 4 to 52 ng g(-1) dry weight (dw) of THg and 0.1 to 1.3 ng g(-1) dw of MeHg. Upland soils contained 162+/-132 ng g(-1) dw of THg and 0.6+/-0.6 ng g(-1) dw of MeHg. Complete burning caused plants to lose 96, 98, 97, and 94% of the mass, C, THg, and MeHg, respectively. Upland soil lost 27, 95, 79, and 82% of the mass, C, THg, and MeHg, respectively. Our results demonstrated that a substantial loss of C, THg, and MeHg was caused by burning.  相似文献   

14.
Prairie wetlands may be important sites of mercury (Hg) methylation resulting in elevated methylmercury (MeHg) concentrations in water, sediments and biota. Invertebrates are an important food resource and may act as an indicator of MeHg exposure to higher organisms. In 2007-2008, invertebrates were collected from wetland ponds in central Saskatchewan, categorized into functional feeding groups (FFGs) and analyzed for total Hg (THg) and MeHg. Methylmercury and THg concentrations in four FFGs ranged from 0.2-393.5 ng · g(-1) and 9.7-507.1 ng · g(-1), respectively. Methylmercury concentrations generally increased from gastropods with significantly lower average MeHg concentrations compared to other invertebrate taxa. Surrounding land use (agricultural, grassland and organic agricultural) may influence MeHg concentrations in invertebrates, with invertebrate MeHg concentrations being higher from organic ponds (457.5 ± 156.7 ng · g(-1)) compared to those from grassland ponds (74.8 ± 14.6 ng · g(-1)) and ponds on agricultural lands (32.8 ± 6.2 ng · g(-1)).  相似文献   

15.
Most reports on mercury (Hg) in boreal ecosystems are from the Nordic countries and North America. Comparatively little information is available on Hg in wetlands in China. We present here a study on Hg in the Tangwang River forested catchment of the Xiaoxing'an Mountain in the northeast of China. The average total Hg (THg) in peat profile ranged from 65.8 to 186.6 ng g(-1) dry wt with the highest at the depth of 5-10 cm. THg in the peat surface was higher than the background in Heilongjiang province, the Florida Everglades, and Birkeness in Sweden. MethylHg (MeHg) concentration ranged from 0.16 to 1.86 ng g(-1) dry wt, with the highest amount at 10-15 cm depth. MeHg content was 0.2-1.2% of THg. THg and MeHg all decreased with the depth. THg in upland layer of soil (0-20 cm) was comparable to the peat surface, but in deeper layers THg concentration in peat was much higher than that in the forested mineral soil. THg in the peat bog increased, but MeHg decreased after it was drained. THg content in plant was different; THg contents in moss (119 ng g(-1) dry wt, n=12) were much higher than in the herbage, the arbor, and the shrubs. The peat bog has mainly been contaminated by Hg deposition from the atmosphere.  相似文献   

16.
The effects of environmental and maternally derived methylmercury (MeHg) on the embryonic and larval stages of walleye (Stizostedion vitreum) were investigated using eggs collected during two successive spawning seasons. Eggs were collected from fish in a mercury (Hg)-polluted environment (Clay Lake, Ontario, Canada), and from fish in two relatively pristine lakes (Lakes Manitoba and Winnipeg, in the province of Manitoba). Both bioaccumulation of Hg into muscle and its mobilization into eggs was significantly higher in Clay Lake females. Maternal muscle MeHg concentration was positively correlated with female length and egg MeHg was positively correlated with muscle MeHg concentration in all three populations. Hatching success of eggs from all three stocks declined significantly with increasing waterborne MeHg (0.1-7.8 ng l-1). Hatching success was not significantly affected by egg MeHg concentration. Embryonic heart rate declined with increasing waterborne MeHg concentration, but larval growth was not affected. Occurrence of larval deformities was negatively correlated with size of female, but was not significantly correlated with MeHg in either eggs or water. Larval MeHg was positively correlated with the concentrations of MeHg in eggs demonstrating transmission of MeHg from females. Uptake of ambient MeHg was higher in larvae exposed to higher waterborne MeHg concentrations.  相似文献   

17.
From June 1993 to October 1994, studies have been carried out on the effects of mercury in the Oder River and pike tissue contamination (muscle, kidney, liver). The mean mercury contents in the sediment range from 0.03 to 1.1 mg/kg dry weight. In the pike muscle, between 0.22 and 0.85 mg/kg, on a wet weight basis, were found. The measured mercury concentrations were analysed in relation to the number of macrophage centres of the liver, spleen and kidney of the pike. Positive correlations between mercury and MC response (0.54 ≤ r ≤ 0.79, p < 0.05) were found in all of these organs. The suitability of the macrophage-centre-response as a possible bioindicator for mercury pollution is discussed in the literature. In our study, the response of MCs was found to be suitable as a biomarker for the impairment of fish health.  相似文献   

18.
Characteristics of mercury speciation in Minnesota rivers and streams   总被引:2,自引:0,他引:2  
Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs.  相似文献   

19.
This research investigated whether environmental conditions, biological fish characteristics and anthropogenic impacts influenced mercury (Hg) assimilation into the muscle tissue of two fish species from two Brazilian bays, Ilha Grande Bay and Guanabara Bay. Fish and superficial water were collected in different periods. Hg was determined by CV-AAS. Methylmercury (MeHg) was identified and quantified by ECD-GC. Chlorophyll a concentrations in the water column indicated that Ilha Grande Bay and Guanabara Bay were oligotrophic and eutrophic, respectively. Hg in fish ranged from 2.10 to 870.17 μg kg?1 dry wt. in Ilha Grande Bay and 40.90 to 809.24 μg kg?1 dry wt. in Guanabara Bay. Slight differences were found between the length-normalized Hg concentrations and its percent of Hg in a voracious predator from the bays. In Guanabara Bay, where the presence of a chlor-alkali plant causes Hg input, the iliophagous fish species showed the highest length-normalized Hg concentrations and the voracious predator the lowest. Iliophagous fish is consumed by voracious predator and, consequently, acts as their MeHg food supply. Iliophagous fish from Ilha Grande Bay presented a higher percent of MeHg (80.0 %) than specimens from Guanabara Bay (54.5 %). This fact suggests that more MeHg was transferred from iliophagous fish to voracious predator in Ilha Grande Bay. At Guanabara Bay, the bioproduction is greater than that at Ilha Grande Bay, presenting the highest biomass in it ecosystem, which may subsequently dilute Hg and reduce its availability to the biota; i.e., influencing in Hg and MeHg availability throughout the food chain. Consequently, more MeHg is available in the aquatic environment of Ilha Grande Bay.  相似文献   

20.
Liang P  Shao DD  Wu SC  Shi JB  Sun XL  Wu FY  Lo SC  Wang WX  Wong MH 《Chemosphere》2011,82(7):1038-1043
To study the influence of mariculture on mercury (Hg) speciation and distribution in sediments and cultured fish around Hong Kong and adjacent mainland China waters, sediment samples were collected from six mariculture sites and the corresponding reference sites, 200-300 m away from the mariculture sites. Mariculture activities increased total mercury, organic matter, carbon, nitrogen and sulfur concentrations in the surface sediments underneath mariculture sites, possibly due to the accumulation of unconsumed fish feed and fish excretion. However, methylmercury (MeHg) concentrations and the ratio of MeHg to THg (% MeHg) in sediments underneath mariculture sites were lower than the corresponding reference sites. The % MeHg in sediments was negatively correlated (r = −0.579, p < 0.05) with organic matter (OM) content among all sites, indicating that OM may have inhibited Hg methylation in surface sediments. Three mariculture fish species were collected from each mariculture site, including red snapper (Lutjanus campechanus), orange-spotted grouper (Epinephelus coioides) and snubnose pompano (Trachinotus blochii). The average MeHg concentration in fish muscle was 75 μg kg−1 (wet weight), and the dietary intake of MeHg through fish consumption for Hong Kong residents was 0.37 μg kg−1 week−1, which was lower than the corresponding WHO limits (500 μg kg−1 and 1.6 μg kg−1 week−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号