首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper we studied the synthesis of biodegradable optically active poly(ester-imide)s containing different amino acid residues in the main chain. These pseudo-poly(amino acid)s were synthesized by polycondensation of N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a diphenolic monomer and two chiral trimellitic anhydride-derived diacid monomers containing s-valine and l-methionine. The direct polycondensation reaction of these diacids with aromatic diol was carried out in a system of tosyl chloride (TsCl), pyridine (Py) and N,N′-dimethylformamide (DMF) as a condensing agent. The structures and morphology of these polymers were studied by FT-IR, 1H-NMR, powder X-ray diffraction, field emission scanning electron microscopy (FE-SEM), specific rotation, elemental and thermogravimetric analysis (TGA) techniques. TGA profiles indicate that the resulting PEIs have a good thermal stability. Morphology probes showed these polymers were noncrystalline and nanostructured polymers. The monomers and prepared polymers were buried under the soil to study the sensitivity of the monomers and the obtained polymers to microbial degradation. The high microbial population and prominent dehydrogenase activity in the soil containing polymers showed that the synthesized polymers are biologically active and microbiologically biodegradable. Wheat seedling growth in the soil buried with synthetic polymers not only confirmed non-toxicity of polymers but also showed possibility of phyto-remediation in polymer-contaminated soils.  相似文献   

2.
3.
Amorphous and crystallized poly(l-lactic acid) (PLLA-A and PLLA-C, respectively) films were prepared, and the proteinase K-catalyzed enzymatic degradation of UV-irradiated and non-irradiated PLLA-A and PLLA-C films was investigated for periods up to 10 h (PLLA-A) and 60 h (PLLA-C). The molecular weights of both the PLLA-A and PLLA-C films can be manipulated by altering the UV irradiation time. The enzymatic weight loss values of the UV-irradiated PLLA films were higher than or similar to those of the non-irradiated PLLA film, when compared with the specimens of same crystallinities. UV irradiation is expected to cause the PLLA films to undergo chain cleavage (a decrease in molecular weight) and the formation of C=C double bonds. It seems that the acceleration effects from decreased molecular weight on enzymatic degradation were higher than or balanced with the disturbance effects caused by the formation of C=C double bonds. After enzymatic degradation, a fibrous structure appeared on the spherulites of the UV-irradiated PLLA-C film. This structure may have arisen from chains containing or neighboring on the C=C double bonds, which were enzymatically undegraded and assembled on the film surface during enzymatic degradation. The results of this study strongly suggest that UV irradiation will significantly affect the biodegradation behavior of PLLA materials in the environment.  相似文献   

4.
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), 1H and 13C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, 13C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.  相似文献   

5.
The development of synthetic biodegradable polymers using solvent free polymerization has a unique potential to be used as sustainable polymers in biomedical applications. The aim of this work was to synthesize and characterize a sustainable class of poly(lactic acid) (PLA) under different operating conditions via direct polycondensation of lactic acid (LA). Several parameters were tested including the absence of solvents and catalysts on the polymerization, in addition to polymerization temperature and time. Polymerization conditions were evaluated using response surface method (RSM) to optimize the impact of temperature, time, and catalyst. Results showed that molecular weight (Mw) of PLA increased with increasing polymerization time. Highest Mw of 28.4 kD with relatively a broad polydispersity 1.9 was achieved at polymerization temperature 170?°C at 24 h in the free solvent polymerization. This led to a relevant inherent viscosity of 0.37 dl/g. FTIR spectra exhibited a disappearance of the characteristic peak of the hydroxyl group in LA at 3482 cm?1 by increasing the intensity of carbonyl group. The 1H nuclear magnetic resonance (NMR) exhibited the main chain at 5.22 ppm and the signal of methyl proton at 1.61 ppm as well as a signal at 4.33 and 1.5 assigned to the methane proton next to the terminal hydroxyl group and carboxyl group respectively. Meanwhile, the PLA synthesized with a catalyst [Sn(Oct)2] in a free solvent demonstrated comparatively high thermal transition properties of glass transition, melting, and crystallinity temperatures of 48, 106, and 158?°C, respectively. These results are of significant interest to further expand the use of PLA in biomedical applications.  相似文献   

6.
The environmental aging behaviour of montmorillonite (MMT) filled polylactic acid (PLA) nanocomposites (PLA/MMT) and linear low density polyethylene (LLDPE)-toughened PLA (PLA/LLDPE ratio = 90/10) nanocomposites (PLA/LLDPE/MMT) were investigated in this study. The nanocomposites were subjected to water absorption, hygrothermal degradation and soil burial analysis. Both PLA/MMT and PLA/LLDPE/MMT nanocomposites were immersed in distilled water at three different temperatures (room temperature, 60, and 90 °C) and the weight difference before and after immersion was calculated. The kinetics of water absorption for both nanocomposites followed the Fick’s second law of diffusion, where a linear relationship exists between the initial moisture absorption at any time t and t 1/2 (the square root of time), followed by a horizontal plateau (saturation). The equilibrium moisture content (M m ) and diffusion coefficient (D) of PLA nanocomposites increased with the addition of MMT (2 phr) and LLDPE. However, the D values of both nanocomposites decreased by increasing MMT (4 phr). The M m for PLA/MMT and PLA/LLDPE/MMT nanocomposites increased by increasing immersion temperature (60 °C) and prolonged immersion resulted in hygrothermal degradation of both nanocomposites. The hygrothermal degradation studies showed that PLA degrades much faster at 90 °C as compared to 60 °C in both the nanocomposites. The addition of MMT and LLDPE improved the hygrothermal stability of PLA in both nanocomposites. Soil burial test revealed deterioration of impact strength in all samples while the rate of biodegradation was retarded in the presence of MMT and LLDPE.  相似文献   

7.
A gene encoding a poly(l-lactic acid) (PLA) depolymerase from Pseudomonas sp. strain DS04-T was cloned and overexpressed in Escherichia coli. The recombinant PLA depolymerase with a molecular weight of 19.2 kDa was purified to homogeneity. The optimum pH and temperature of the PLA depolymerase are 8.5 and 60 °C, respectively. K+, Ca2+ and Ni2+ enhance the enzyme activity, while Na+, Zn2+, Mg2+, Cu2+, Fe2+, Mn2+ and Co2+ inhibit it. The inhibition of different chemicals on the PLA depolymerase activity were examined, in which EDTA was found to have a significantly inhibitory effect. The main degradation product of the depolymerase is identified as lactic acid monomer by mass spectrometric analysis. Physicochemical properties, substrate specificity and sequence analysis indicated that PME is a new type of PLA depolymerase.  相似文献   

8.
The degradation of chitosan by means of ultrasound irradiation and its combination with homogeneous photocatalysis (photo-Fenton) was investigated. Emphasis was given on the effect of additive on degradation rate constants. 24 kHz of ultrasound irradiation was provided by a sonicator, while an ultraviolet source of 16 W was used for UV irradiation. To increase the efficiency of degradation process, degradation system was combined with Fe(III) (2.5 × 10−4mol/L) and H2O2 (0.020–0.118 mol/L) in the presence of UV irradiation and the rate of degradation process change from 1.873 × 10−9−6.083 × 10−9 mol1.7 L s−1. Photo-Fenton process led to complete chitosan degradation in 60 min with the rate increasing with increasing catalyst loading. Sonophotocatalysis in the presence of Fe(III)/H2O2 was always faster than the respective individual processes. A synergistic effect between ultrasound and ultraviolet irradiation in the presence of Fenton reagent was calculated. The degraded chitosans were characterized by X-ray diffraction (XRD), gel permeation chromatography (GPC) and Fourier transform infrared (FT-IR) spectroscopy and average molecular weight of ultrasonicated chitosan was determined by measurements of intrinsic viscosity of samples. The results show that the total degree of deacetylation (DD) of chitosan change, partially after degradation and the decrease of molecular weight led to transformation of crystal structure. A negative order for the dependence of the reaction rate on total molar concentration of chitosan solution within the degradation process was suggested. Results of this study indicate that the presence of catalyst in the reaction medium can be utilized to reduce molecular weight of chitosan while maintaining the power of irradiated ultrasound and degree of deacetylation.  相似文献   

9.
We herein report the effects of the component ratio and method of blending on the synthesis of stereocomplex poly(lactic acid) (SC-PLA) based on poly(l-lactic acid) (PLLA) and poly(d-lactic acid) (PDLA) prepolymers. PLLA and PDLA were prepared by direct melt polycondensation of lactic acid (DMP). Combined with the dual catalyst system, PLA prepolymers with Mw more than 20,000 were prepared by DMP. PLLA was mixed by powder blending or melt blended with PDLA. It is revealed that melt-point and spherulite growth rate of SC-PLA is strongly dependent on the perfection of SC structure. The melt point of PLA can be increased by nearly 50 °C because of the particular strong intermolecular interaction between PLLA and PDLA chains. Solid-state polycondensation (SSP) is an efficient method to increase the molecular weight of SC-PLA, but it can have a negative effect on the regularity of linear chains of SC-PLA. Thermogravimetry analyzer (TGA) results show that SC structure cannot cause the delay reaction on the thermal degradation of PLA.  相似文献   

10.
Poly (l-aspartic acid-citric acid) green copolymers were developed using thermal polymerization of aspartic acid (ASP) and citric acid (CA) followed by direct bulk melt condensation technique. Antibacterial properties of copolymer of aspartic acid based were investigated as a function of citric acid content. This study is focused on the microorganism inhibition performance of aspartic acid based copolymers. Results showed that inhibition properties increase with increasing citric acid content. Characterization of obtained copolymers was carried out with the help of infrared absorption spectra (FTIR), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and thermo gravimetric analysis (TGA). The antibacterial activity of copolymers against bacteria like E-coli, Bacillus and pseudomonas was investigated. The copolymers showed excellent antimicrobial activities against three types of microorganisms. Overall studies indicated that the above copolymers possess a broad wound dressing activity against above three types of bacteria and may be useful as antibacterial agents.  相似文献   

11.
Copolyesters based on isosorbide and butanedioic acid in combination with monomers such as adipic acid and dimethyl terephthalate, poly(isosorbide-co-butanedioic acid) (and -co-adipic acid) and poly(isosorbide-co-butanedioic acid-co-dimethyl terephthalate), were synthesized and characterized. Linear OH-functionalized polyesters were obtained via melt polyesterification of dicarboxylic acids with OH-functional monomers. The type of end-group was controlled by the monomer stoichiometry and hydroxyl functional group is formed in time. Average molecular masses of synthesised polyesters were measured by gel permeation chromatography. The glass transition temperatures and thermal stability of the obtained polyesters were effectively adjusted by varying polymer composition and molar mass. Addition of adipic acid or dimethyl terephthalate increased glass transition temperatures of obtained polyesters. Thermal stability of obtained polyester slightly increases by the increasing of dimethyl terephthalate content. Molecular structures of obtained polyester were assessed by Fourier transform infrared spectra and 1H NMR spectroscopy.  相似文献   

12.
Carbohydrate acid amides, diamides and polyamides have been proposed to be utilized as nitrogen plant fertilizers or fertilizer components, and experiments with Brassica rapa demonstrated a positive biological response when these compounds were used as the only source of fixed nitrogen for plant growth. The present study was carried out with the aim of elucidating the mechanism of degradation of these polymers in both soil/compost and in liquid media and the role of microorganisms in this process. The results obtained suggest that a major route of degradation of polyglucaramides in the environment is their abiotic hydrolysis/release of the diacid and diamine building block units of these polymers, which are then utilized for growth by microorganisms. In cell-free crude extracts from enrichment cultures obtained with different poly-D-glucaramides, no enzyme activities catalyzing the release of diamines from these compounds were detected.  相似文献   

13.
The melting and crystallization behavior of pure poly (lactic acid) (PLA) and PLA composites (1% Bamboo Fiber (BF)/PLA, 1% Talc/PLA, 1% BF/1% Talc/PLA) were studied with differential scanning calorimetry (DSC). DSC curves for PLA composites were obtained at various cooling rates, the crystallization temperature and heat of crystallization of PLA composites decreased almost linearly with increasing of log (cooling rate). Moreover, BF has minor effect and talc has the great effect on the crystallization temperature in the PLA composites. With increasing of cooling rate, the main melting temperature of PLA composites decreased. In pure PLA and 1% BF/PLA, the double-melting behavior appeared in the heating curves after slow rate of cooling, and there was the opposite phenomenon of double-melting behavior in other two PLA composites. BF promotes forming the imperfect crystal in the PLA composites during heating process. With increasing of heating rate, the main melting temperature of PLA composites increased except the 1% BF/PLA. At various heating rates, the defects of BF structure promoted the melt-recrystallization and talc promoted forming the small crystals. At last, the recrystallization model was given.  相似文献   

14.
Hydrogels were synthesized by free radical graft copolymerization of itaconic acid (IA) onto corn starch (S-g-IA). For this purpose, potassium permanganate (KMnO4)-sodium bisulfite (NaHSO3) was used as redox initiation system. The formation of grafted starches was confirmed by Fourier transform infrared spectroscopy, wide angle X-ray scattering, thermogravimetric analysis and scanning electron microscopy. The effect of monomer concentration, neutralization, addition of crosslinking agent, N,N-bismetilenacrilamide (MBAm), and initiator concentration on grafting efficiency and adsorption capacity of the starch hydrogels was investigated. It was demonstrated that the introduction of carboxyl and carbonyl groups promoted starch hydration and swelling. Grafting degree increased with the decrease of monomer concentration, increase of initiator concentration, grade of neutralization and the addition of MBAm without neutralization. Remarkably the resulting materials exhibited water absorption capacities between 258 and 1878% and the ability to adsorb metal ions. It was experimentally confirmed the metal uptake, obtaining the higher adsorption capacity (q e  = 35 mg/g) for the product prepared with the pre-oxidation and lower initiator concentration. The removal capacity order was Pb2+>Ni2+>Zn2+>Cd2+. Moreover, the experimental kinetic and the equilibrium adsorption data for Ni2+ and Pb2+ were best fitted to the pseudo-second order and Freundlich isotherm models, respectively. This work describes for the first time the preparation of metal removal hydrogels based on starch and itaconic acid using the pair redox system KMnO4/NaHSO3, which avoids the starch hydrolysis and allows itaconic acid grafting incorporation without the requirement of more reactive comonomers.  相似文献   

15.
Ring-opening polymerization of cyclic esters (-caprolactone, -valerolactone, and l-lactide) onto liquefied biomass (LB) was conducted to obtain the polyester-type polyol and to regulate the characteristics of LB. IR and 1H-NMR spectra of the obtained polyol showed that the polymerization was successfully conducted in the presence of acid catalyst, which is used in liquefaction. The molecular weight (Mw), hydroxyl value, and viscosity were controllable by changing the reaction conditions. Polyester-type polyurethane foams with a wide range of properties were prepared from the obtained polyol with the appropriate combinations of foaming agents.  相似文献   

16.
As one of a series of studies concerning the relationship between the higher-order structure and the biodegradability of a biodegradable plastic, the effects of the crystal structure of the plastic on microbial degradation were investigated. Bacterial poly(d-(–)-3-hydroxybutyrate) (PHB) films which had a wide range of crystallinity were prepared by the melt-quenching method. Results of the microbial degradation indicated that the development of crystallinity evidently depressed the microbial degradability. From scanning electron microscopy (SEM) observations, it is suggested that the microbial degradation proceeded in at least two manners. One was preferential degradation of the amorphous region leaving the crystalline lamellae intact, which was considered to be a homogeneous enzymatic degradation over the surface. The other was nonpreferential spherical degradation on the surface. The SEMs indicate that the spherical holes were the result of colonization by degrading bacteria. The holes varied in size and number with the change of crystal structure. Therefore, it is considered that the crystal structure of PHB also influenced the physiological behavior of the degrading bacteria on the PHB surface.  相似文献   

17.
The shape memory behavior of PLLA (poly(l-lactide)) and chitosan/PLLA composites was studied. PLLA and chitosan were compounded to fabricate novel materials which may have biodegradability and biocompatibility. Chitosan does not significantly affect the glass and melting transition temperature of the PLLA. Both the pure PLLA and chitosan/PLLA composites showed shape memory effect arising from the viscoelastic properties of PLLA comprised of semi crystalline structures. The shape recovery ratio of the chitosan/PLLA composites decreased significantly with increasing chitosan contents due to the incompatibility between PLLA and chitosan. Phase separation structures of the composites were observed by using atomic force microscopy. To obtain good shape memory effect, the chitosan content should be below 15 wt%.  相似文献   

18.
Increasing demand in the use of poly(lactic acid) (PLA) leads to a debate about using potential foodstuffs for plastic production and a moral issue when starvation problem is taken into account. One of the solutions is recycling of PLA; however, recycling results in property losses during melt processing due to low thermal stability of PLA. This study focuses on using chain extenders to offset thermal degradation of recycled PLA. The effects of a diisocyanate and a polymeric epoxidized chain extender on the properties of the recycled poly(lactic acid) were investigated. In order to mimic the recycling process, PLA was subjected to thermo-mechanical degradation using a laboratory scale compounder. Chain extender type, loading and mixing time were investigated. On-line rheology and intrinsic viscosity measurements of PLA before and after chain extension confirmed that the molecular weight increased. Dynamic mechanical analysis, rheology and tensile tests revealed that the chain extenders led to a significant increase in modulus, strength and melt-viscosity. It was found that diisocyanate had slightly higher and faster chain extension reactivity than polymeric extender. Differential scanning calorimetry results showed an increase in the crystallization temperature due to the branched and extended chain structure.  相似文献   

19.
Three high molecular weight (120,000 to 200,000 g mol–1) polylactic acid (PLA) plastic films from Chronopol (Ch-I) and Cargill Dow Polymers (GII and Ca-I) were analyzed for their degradation under various temperature and relative humidity (RH) conditions. Two sets of plastic films, each containing 11 samples, were randomly hung in a temperature/humidity-controlled chamber by means of plastic-coated paper clips. The tested conditions were 28, 40, and 55°C at 50 and 100% RH, respectively, and 55°C at 10% RH. The three tested PLA films started to lose their tensile properties when their weight-average molecular weight (M w) was in the range of 50,000 to 75,000 g mol–1. The average degradation rate of Ch-I, GII, and Ca-I was 28,931, 27,361, and 63,025 M w/week, respectively. Hence, GII had a faster degradation rate than Ch-I and Ca-I under all tested conditions. The degradation rate of PLA plastics was enhanced by the increase in temperature and relative humidity. This trend was observed in all three PLA plastics (Ca-I, GII, and Ch-I). Of the three tested films, Ch-I was the first to lose its mechanical properties, whereas Ca-I demonstrated the slowest loss, with mechanical properties under all tested conditions.  相似文献   

20.
The use of long-lasting polymers as packaging materials for short lived applications is not entirely justified. Plastic packaging materials are often soiled due to foodstuffs and other biological substances, making physical recycling of these materials impractical and normally unwanted. Hence, there is an increasing demand for biodegradable packaging materials which could be easily renewable. Use of biopolymer based packaging materials allows consideration of eliminating issues such as landfilling, sorting and reprocessing through taking advantage of their unique functionality, that is compostability. Composting allows disposal of biodegradable packages and is not as energy intensive compared to sorting and reprocessing for recycling, although it requires more energy than landfilling. The aim of this work was to study the degradation of three commercially available biodegradable packages made of poly (ld-lactide) (PLA) under real compost conditions and under ambient exposure by visual inspection, gel permeation chromatography, differential scanning calorimetry, and thermal gravimetric analysis. A novel technique to study the degradability of these packages and to track the degradation rate under real compost conditions was used. The packages were subjected to composting for 30 days, and the degradation of the physical properties was measured at 1, 2, 4, 6, 9, 15 and 30 days. PLA packages made of 96% l-lactide exhibited lower degradation than PLA packages made of 94% l-lactide, mainly due to their highly ordered structure, therefore, higher crystallinity. The degradation rate changed as the initial crystallinity and the l-lactide content of the packages varied. Temperature, relative humidity, and pH of the compost pile played an important role in the total degradation of the packages. A first order degradation of the molecular weight as a function of time was observed for the three packages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号