首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气化熔融焚烧技术能够避免重金属和二恶英的二次污染,被公认为实现零排放和环境友好型的焚烧方法。在这样的背景下提出了生活垃圾并流竖炉气化熔融焚烧工艺。该工艺以竖炉为气化熔融主体设备,垃圾料层与助燃空气在炉内都是至上而下并流流动,从而使垃圾热解气化产生的可燃气体在竖炉下部完全燃烧,以提供灰渣熔融耗热。并流竖炉热态模拟试验表明,并流时垃圾料层中各点的温度明显高于逆流情况,并流时产生的CO2量明显高于逆流情况。因此说并流竖炉更适合气化熔融焚烧工艺的要求。  相似文献   

2.
BACKGROUND AND INTENTION: Aromatic sulphonates other than surfactants and their hydroxy and amino-derivatives are important intermediates for the production of azo dyes. Their production on a large scale can be detrimental for the environment, if the by-products of their synthesis are not disposed of appropriately. An industrial waste, the organic components of which were mainly amino and hydroxy-substituted aromatic sulphonates, seriously endangers the environment close to an dismissed Italian industrial site. Inorganic sulphates and chlorides contained in the waste seriously hinder its disposal by incineration, since they corrode furnace walls. In this work, preliminary exploration of aqueous-phase electrochemically and photochemically induced oxidation techniques have been performed as possible alternatives to incineration. METHODS: Electrochemically-induced oxidation was experimented on individual aromatic sulphonates and on an industrial waste by electrolysing them between smooth platinum electrodes at low temperature (5 degrees C) and high current densities (0.4 A/cm2) with aqueous 0.5 M NaHSO4 electrolyte. Photochemically-induced oxidation was performed by irradiating individual aromatic sulphonates or industrial waste with a 500 W mercury lamp in the presence of sodium peroxydisulphate. RESULTS AND DISCUSSION: After 200 min electrodegradation, 90% of the original compounds disappeared, while 50% Total Organic Carbon (TOC) of an industrial waste was removed from solution after 10 hours. After 180 min UV-photodegradation, 90% of two test aromatic sulphonates disappeared, while 65% of TOC of industrial waste was removed after 5 hours. CONCLUSIONS: Two methods, electrochemical and UV-persulphate oxidation of an industrial waste, were used in order to propose a disposal procedure alternative to incineration. Electrodegradation with smooth Pt anode in 0.5 M NaHSO4 at 5 degrees C halved TOC concentration within 10 hours, while persulphate-assisted UV-photochemical oxidation with a 500 W high pressure Hg lamp abated two-thirds of TOC concentration after 5 hours. Energetic consumption of electrodegradation was 0.33 kWh/g TOC, while that of photooxidation was larger than 2 kWh/g TOC. Although both techniques can be considered efficient from a purely chemical point of view, since both are capable of wet-oxidising the aromatic sulphonates and the industrial waste, electrodegradation seems more promising than a photochemical degradation if economical considerations are also taken into account. Considering also that neither cell design nor catalyst were optimised in this preliminary study, the energy yield of electrodegradation seems likely to be largely improved.  相似文献   

3.
Jung CH  Osako M 《Chemosphere》2007,69(2):279-288
This study aims to identify the thermodynamic behavior of rare metal elements during the melting process of municipal solid waste incineration residues. The fate of several selected rare metal elements was investigated using two approaches: experimental and thermodynamic equilibrium calculation at two actual melting plants. The results revealed that Ag, Bi, Ga, Ge, In, Pd, Sb, Te, and Tl are readily volatilized as chloride and/or gaseous forms and then condensed in melting furnace fly ash. On the other hand, Cr, Ni, Ta, V, and Zr tend to mostly remain in molten slag. Sn is volatilized as SnS (g) under reducing conditions while volatilization is suppressed under oxidizing conditions. Thermodynamically, total volatilization of Mn as MnCl2 (g) occurred with highly available chlorine under oxidizing conditions. However, at the actual plants, only a small proportion was volatilized. As for Co, Mo, and W, no volatilization occurred at the actual plants although the calculations suggest that these elements can form volatile metal chloride and volatilize. Non-equilibrium and heterogeneity of the actual plant melting furnace could explain the discrepancy. This study provided a good qualitative view of the behavior of rare metals in the melting process, but further investigation is required to produce a more accurate simulation and to resolve the discrepancy.  相似文献   

4.
生活垃圾安全无害化处理是目前迫切需要解决的问题,直接气化熔融焚烧垃圾技术以降低二恶英排放方面巨大优势得到广泛关注,在此基础上提出纯氧熔融焚烧垃圾技术,几乎可以实现所有二次污染物近零排放。以350 t/d回转窑垃圾焚烧炉为例,对纯氧代替空气应用在回转窑上熔融焚烧垃圾系统进行了详细热力计算及分析。结果表明,纯氧熔融焚烧垃圾系统的锅炉效率可达90.56%,回转窑熔融焚烧系统还可以在垃圾焚烧后灰渣达到熔融温度的条件下,保持该系统热量平衡,稳定燃烧。并参考回转窑设计标准对该纯氧熔融焚烧城市生活垃圾的回转窑参数进行确定。  相似文献   

5.
This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 degrees C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 microg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 microg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

6.
Control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in emissions and thermal residues from incinerators has been a cause of public concern for more than one decade. Recently, several studies showed that other persistent organic pollutants (POPs) such as coplanar polychlorinated biphenyls (co-PCBs) also have dioxin-like activity and are released from incinerators. Therefore, the present study was aimed at making a risk assessment about dioxin-like activity in extracts of thermal waste residues (e.g. combustion gas; fly ash, slag) from incineration and melting processes in Germany and Japan. For this purpose, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), coplanar polychlorinated biphenyls (co-PCBs), polychlorinated naphthalenes (PCNs) and polyaromatic hydrocarbons (PAHs) were analyzed by chemical analysis. Additionally, 2, 3, 7, 8-TCDD equivalents (EROD-TEQs) were determined by in vitro Micro-EROD bioassay using rat H4IIE hepatoma cells. EROD-TEQs could be correlated to I-TEQ values (from PCDD/Fs/co-PCBs) analyzed by chemical analysis resulting in a maximal sixfold higher estimate. Our study indicates minor influences of co-PCBs, PAHs and PCNs to the sum of dioxin-like toxicity in the extracts of thermal waste residues as determined here. Furthermore, we showed that the levels of dioxins and co-PCBs contained in slag from melting processes and bottom ashes from incineration processes were lower by 1-2 orders of magnitude than that in fly ash.  相似文献   

7.
ABSTRACT

Vitrification processes, in which the operating temperature is higher than the melting point of the silica compounds contained in sewage sludge that turns into slag, are studied in this paper. The dried sludge and the incineration ash are injected into a furnace with auxiliary fuel and flux. The flux is the material used to control basicity of the ash content. Crushed limestone is used as the flux in this test. Almost all ashes in the sludge are vitrificated into slag. The flow of molten slag from the tap is smooth. After the slag is treated, it can be used as wall tile, interlocking tile, insulating material, and slag wool. This technology conforms to resource recycling.  相似文献   

8.
Abstract

This study characterized the emissions of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) from the stack flue gases of 17 industrial sources, which were classified into 10 categories. The results show that the mean PCDD/PCDF concentration of secondary zinc smelter (Zn-S) and secondary copper smelter (Cu-S) is 2.44 ng international toxic equivalent (I-TEQ)/Nm3 (N represents normal conditions at 0 °C, 760 mmHg), which was found to be significantly greater than that of industrial waste incinerators (mean concentration = 0.15 ng I-TEQ/Nm3). These results imply that the controlling of secondary metallurgical melting processes is more important than industrial waste incineration for the reduction of PCDD/PCDF emissions. The mean emission factors of cement production, Zn-S and Cu-S, are 0.052, 1.99, and 1.73 μg I-TEQ/t product, respectively. For industrial waste incineration, the mean emission factors of waste rubber, waste liquor, waste sludge, industrial waste solid (IWI)-1, IWI-2, IWI-3, and IWI-4 are 0.752, 0.435, 0.760, 6.64, 1.67, 2.38, and 0.094 μg I-TEQ/t feed, respectively. Most of the PCDD/PCDF emission factors established in this study are less than those reported in previous studies, which could be because of the more stringent regulations for PCDD/PCDF emissions in recent years.  相似文献   

9.
Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

10.
Glass ceramics were prepared from mixtures of wastes generated from refining of waste glass and semiconductor industrial wastewater sludge. The aim is then indeed to study the possible use and effects of integrating calcium fluoride (CaF2) as present in semiconductor wastewater sludge in the silica (glass) melts. CaF2 sludge was blended with a conditioner according to characteristics of the target. Calcium oxide-silicon dioxide-aluminum oxide system glass ceramics have relatively high melting points. Addition of CaF2 sludge to fluxes can significantly reduce the melting point and hence improve the kinetics of the reactions. CaF2 sludge and waste glass were co-melted in various ratios to elucidate their interactions at various heating temperatures. The results indicate that the lowest melting temperature was 1163 degrees C, obtained for the CaF2 sludge-waste glass mixture at a ratio 6:4 (wt:wt), which is significantly lower than that of CaF2 sludge (1378 degrees C). The benefits of using melting to dispose of sludge are the reduction of waste and the fixation of heavy metals. Heat treatment was used to convert the obtained glass into glass ceramics. Heavy metal leaching tests revealed that melting conditions lowered the heavy metal concentrations in the leachate to an order of magnitude lower than that in the sludge. Consequently, industrial sludge can be safely used as a fine aggregate material for a potentially wide range of construction applications.  相似文献   

11.
Abstract

Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.  相似文献   

12.
The emission of polycyclic aromatic hydrocarbons (PAH) caused by municipal waste incineration varies according to waste composition and operating parameters such as furnace temperature and excess air. However, to obtain a sample sufficient to measure the emission of PAH at trace levels, it is necessary to operate the incinerator for many hours. Since during these lengthy periods it has not always been possible to maintain stable conditions, it is very difficult to determine the relationship between the emission and waste composition.

In our basic research, therefore, we used municipal waste with an artificially regulated composition for our combustion experiments, and by using an experimental Incinerator we examined the emission behavior of PAH with respect to changes in waste composition and combustion conditions. The following facts were revealed by the results: ? The PAH found in the flue gas were predominantly the more volatile compounds.

? When municipal waste was incinerated at over 850 °C, the concentration of PAH in the flue gas increased rapidly as the proportion of plastics in the waste increased from 0 to 24 percent.

? The elimination of plastics from municipal waste by separate collection and the improvement of combustion conditions can effectively diminish the emission of PAH.

  相似文献   

13.
A 168-day period field study, carried out in Sisimiut, Greenland, assessed the potential to enhance soil remediation with the surplus heating from an incineration facility. This approach searches a feasible ex situ remediation process that could be extended throughout the year with low costs. Individual and synergistic effects of biostimulation were also tested, in parallel. An interim evaluation at the end of the first 42 days showed that biostimulation and active heating, as separate treatments, enhanced petroleum hydrocarbon (PHC) removal compared to natural attenuation. The coupling of both technologies was even more effective, corroborating the benefits of both techniques in a remediation strategy. However, between day 42 and day 168, there was an opposite remediation trend with all treatments suggesting a stabilization except for natural attenuation, where PHC values continued to decrease. This enforces the “self-purification” capacity of the system, even at low temperatures. Coupling biostimulation with active heating was the best approach for PHC removal, namely for a short period of time (42 days). The proposed remediation scheme can be considered a reliable option for faster PHC removal with low maintenance and using “waste heating” from an incineration facility.  相似文献   

14.
垃圾焚烧飞灰残留有重金属元素和二恶英等物质而被认为是危险废物,必须对之进行稳定化处理.通过试验研究分析了国内首家自主开发成功的广东省东莞市某回转窑垃圾焚烧发电厂垃圾焚烧飞灰的化学成分及矿物组成,研究了飞灰的浸出毒性,考察了水泥固化焚烧飞灰的效果,并与熔融/玻璃固化进行了比较.研究表明,该焚烧飞灰中重金属Cd的浸出毒性严重超标,并且随pH值的减小而增大,水泥固化效果随龄期的增大而更加显著.熔融/玻璃固化的效果优于水泥固化,但其经济性有待提高.  相似文献   

15.
PCDD/PCDF were determined in solid samples from wood combustion. The samples included grate ashes, bottom ashes, furnace ashes as well as fly and cyclone ashes. The solid waste samples were classified into bottom and fly ash from native wood and bottom and fly ash from waste wood. For each of the four classes concentration distribution patterns from individual congeners, the sums of PCDD/PCDF and the international toxicity equivalents (I-TEQ) values are given. The I-TEQ levels of fly ash from waste wood burning can be approximately up to two thousand times higher than the values from fly ashes of natural wood. The I-TEQ levels in bottom ashes from waste wood combustion systems are as low as the corresponding ashes from the combustion of native wood. Grate ash samples from waste wood combustion systems with low carbon burnout show high levels of PCDD/PCDF.  相似文献   

16.
Landfill and sea-dumping appear to be on their way out as acceptable methods for the disposal of untreated industrial wastes in Taiwan. Recently, there has been interest in the application of fluidized bed technology to waste incineration for efficient energy utilization and environmental protection. A pilot fluidized bed combustion system was used to investigate the incineration performance and parametric test for the waste from an industrial park. According to the experimental results, the appropriate operating conditions, including temperatures of 800-840 degrees C, aeration rates of U(0)/Um(f)-2.0 or so, and on-bed feeding, were recommended to treat such waste. The emissions of SO(x), NO(x) and CO in flue gas meet the ROC-EPA regulation.  相似文献   

17.
研究城市生活垃圾在机械炉排炉内焚烧过程,建立了垃圾在炉排炉移动床内燃烧过程中垃圾体积变化、水分蒸发、挥发分析出及燃烧、垃圾颗粒的移动、气-固两相热传递、焦炭燃烧等各个反应阶段的热化学模型,采用一维非稳态模型分别建立了床层内气固两相介质控制方程。通过对炉排上垃圾焚烧过程的数值模拟研究,获得料层中温度分布、料层高度、炉床机械负荷、气相中反应物组分和污染物浓度分布。利用建立的模型对某大型垃圾焚烧炉的燃烧过程进行数值仿真,对燃烧过程、烟气成分进行预测,为垃圾焚烧炉排炉的设计和燃烧控制提供理论依据。  相似文献   

18.
INTENTION, GOAL, SCOPE, BACKGROUND: The halogen bromine is far less abundant than chlorine, but it can be found at high concentrations in special materials like flame retarded plastics. The fate and effects of Br in waste incineration are not well understood. It may have similar implications like Cl for the volatilisation of heavy metals and the formation of low volatile organic compounds. Due to its lower oxidation potential, there is a risk of formation of elementary Br2 in the offgas. OBJECTIVE: Co-combustion tests of different types of Br containing plastic waste materials (up to 22%) and MSW in the TAMARA pilot plant for waste incineration were conducted to investigate the Br partitioning and the influence of Br on metal volatilisation. METHODS: The Br inventory of the fuel mix was elevated to approx. 1 wt-%. All input and output mass flows of the furnace have been sampled and the partitioning of Cl, Br, S, and a number of heavy metals, has been calculated on the basis of closed mass balances. RESULTS AND DISCUSSION: Organically-bound Br was typically released to more than 90% into the raw gas. Elementary Br2 was detected at high Br levels. Its presence was always analysed when all SO2 in the raw gas was oxidised to SO3. Br enhances the volatilisation of metals like K, Zn, Cd, Sn, Sb, and Pb out of the fuel bed principally in the same way as Cl. The tests gave strong indication that the promoting influence of the halogens on metal volatilisation is more pronounced than that of the fuel bed temperature. The volatilised metals are condensated on the fly ashes and are discharged along with the filter ashes. CONCLUSIONS: As long as a surplus of SO2 is present in the raw gas no Br2 is formed. Although the halogen induced transfer out of the fuel bed causes high concentrations of volatile metals in the filter ashes, a recovery is not economically feasible for the time being. The volatilisation gives no rise to metal emission problems as long as efficient dedusting is achieved. RECOMMENDATION AND OUTLOOK: If there is a risk of Br2 formation, in wet scrubbing a reducing agent has to be added to the neutral scrubber for efficient abatement. Filter ashes should be disposed of in a way that enables access for recovery in the future. The exact volatilisation characteristics of the various metals have to be studied in future using specifically tailored experiments.  相似文献   

19.
In the literature, different values of the distribution coefficient KH for HgCl2 between water and air are present in a range that spans more than 3 orders of magnitude. In order to determine if a waste incineration scrubber solution could become saturated with regard to HgCl2, an accurate experimental determination of the distribution constant of HgCl2 at elevated temperatures is needed. In this work, the coefficient has been determined at four different temperatures between 10 and 50 degrees C. The Arrhenius expression obtained is 5.5 x 10(5) x exp[-(8060 +/- 2200)/T] with a corresponding enthalpy for the process HgCl2(aq)<==>HgCl2(g) of 67 +/- 20 kJ/mole. KH at 293 K was found to be approximately 5 x 10(-7) atm M-1, which is in almost perfect agreement with an earlier study. Applying the obtained KH values to waste incineration scrubber conditions shows that no major saturation effect will occur.  相似文献   

20.
在转式垃圾焚烧炉和固定床加热炉中,研究了有机垃圾焚烧过程中温度、水分、无机氯及有机氯对几种重金属分布的影响。研究结果表明,焚烧垃圾过程中焚烧温度对重金属分布特性的影响特性不一,重金属锌和铅容易转移到气相中去,而重金属镍和铬大部分是以固态形式残留在底渣中;水能与重金属及其化合物发生反应,引起物质转变,影响重金属的分布;氯的存在也影响重金属的分布特性,氯的参与使重金属更易向飞灰或烟气中迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号