首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
阿特拉津在水环境中的残留及其毒理效应研究进展   总被引:5,自引:0,他引:5  
阿特拉津是中国及世界上广泛使用的一种除草剂,目前已存在于某些地区的湖泊和地下水中,并对生态环境和人类饮用水源造成潜在威胁.介绍了阿特拉津的应用概况,综述了阿特拉津在水环境中的残留状况及其对生物的生理生化毒性和遗传毒性研究进展.并在此基础上,提出应加强阿特拉津对生物的"三致"(致癌、致畸、致突变)作用、生殖毒性、蓄积毒性和毒性作用机制的研究,以及阿特拉津与其他污染物对生物的联合毒性作用和毒性作用机制的研究.  相似文献   

2.
阿特拉津在土壤中的环境行为研究进展   总被引:16,自引:0,他引:16  
概述了阿特拉津在土壤中的迁移、降解及其对植物的影响等环境行为,阐述了土壤组成、土壤pH值以及温度、湿度等因素对各种环境行为过程的影响,并结合目前国内外的研究现状,提出了阿特拉津环境行为新的研究方向。  相似文献   

3.
羟基氧化铁催化臭氧氧化去除水中阿特拉津   总被引:2,自引:0,他引:2  
以实验室制备的羟基氧化铁(FeOOH)为催化剂,研究了其催化臭氧氧化去除水中痕量阿特拉津的效能,并对影响催化效果因素及降解机理进行了探讨。在本实验条件下,反应8 min时催化氧化阿特拉津的去除率比单独臭氧氧化高出63.2%,而FeOOH对阿特拉津的吸附量很小,结果表明,FeOOH对臭氧氧化水中的痕量阿特拉津具有明显的催化活性。探讨了催化剂投量、pH、阿特拉津初始浓度和重碳酸盐碱度对催化氧化阿特拉津的影响。催化剂最佳投量为150 mg/L,去除率随pH和阿特拉津初始浓度的增加而升高,重碳酸盐浓度为200 mg/L时催化作用受到明显抑制。通过研究叔丁醇对催化反应的影响间接推断了催化反应的机理,叔丁醇作为羟基自由基抑制剂有效地抑制了水中羟基自由基的生成和它对阿特拉津的氧化反应,间接证明这种催化作用遵循羟基自由基的反应机理。  相似文献   

4.
为了综合处理水中的阿特拉津,以绿茶萃取液为还原剂,以活性炭为载体,采用液相还原法绿色合成了纳米铁/活性炭复合材料,研究了活性炭投放量、阿特拉津的初始浓度、溶液初始pH值及反应时间对阿特拉津去除率的影响,探讨了不同影响因素下阿特拉津的降解动力学。结果表明:阿特拉津降解反应近似符合二级反应动力学,反应速率常数0.001 08~0.002 73 L·(mg·min)~(-1)。在纳米铁/活性炭复合材料去除阿特拉津过程中,纳米铁的还原和活性炭的吸附共同作用。  相似文献   

5.
阿特拉津在土壤中的环境行为研究进展   总被引:1,自引:0,他引:1  
概述了阿特拉津在土壤中的迁移、降解及其对植物的影响等环境行为,阐述了土壤组成、土壤pH值以及温度、湿度等因素对各种环境行为过程的影响,并结合目前国内外的研究现状,提出了阿特拉津环境行为新的研究方向。  相似文献   

6.
腐殖酸和铁对阿特拉津光降解影响的研究   总被引:2,自引:0,他引:2  
为考察除草剂在水体中的自净性能,对模拟太阳光(λ> 290 nm)下腐殖酸和铁元素对阿特拉津的光化学降解进行了研究。结果表明,单独辐照阿特拉津几乎不降解。在分别加入3、5和10 mg/L的腐殖酸时,阿特拉津的降解率分别为34.36 %、40.74%和15.66 %;在Fe(Ⅲ)投加量从0.01 mmol/L增加到0.2 mmol/L时,阿特拉津的降解率从24.36 %增加到34.97 %。而在当腐殖酸与铁共存时,阿特拉津降解率则进一步提高。紫外可见光谱和荧光光谱均表明,腐殖酸-铁络合物的形成及其光化学作用,促进了阿特拉津的降解。  相似文献   

7.
从农药厂阿特拉津生产车间污泥中分离出菌种AT菌,进行了系列降解实验。不同温度的降解实验表明,在4~20℃的实验温度范围内,AT菌能够降解代谢污染质,并随温度的升高,降解能力增强。20℃时降解率为38.84%;AT菌在外加氮源、碳源及以阿特拉津为惟一碳源和氮源等条件时对农药污染质阿特拉津均具有降解能力,且在以阿特拉津为惟一氮源(外加碳源)条件下的降解效果最好,此时的降解率为30.39%。  相似文献   

8.
探讨了天然水体中存在的腐殖酸(HA)可见光降解水中阿特拉津的动力学特征和影响因素。结果表明,pH对HA可见光降解阿特拉津具有明显影响,水中HA质量浓度为5.0mg/L时,pH为3、5、7、9的条件下,受可见光照6.00h后阿特拉津(初始质量浓度5mg/L)的去除率分别为75.5%、77.3%、91.7%、84.9%,中性条件下阿特拉津可见光降解效果最佳;当HA质量浓度分别为1.5、3.0、5.0、10.0mg/L时,HA对水中阿特拉津的可见光降解均表现为促进作用,且降解过程符合一级反应动力学方程,其一级反应动力学常数分别为0.337 0、0.361 4、0.445 4、0.314 6h-1,HA为5.0mg/L时阿特拉津的可见光降解效果最佳。实际应用中,可以通过优化HA与阿特拉津的浓度比值,发挥HA促进阿特拉津可见光降解的最佳效能。  相似文献   

9.
除草剂阿特拉津生物降解研究进展   总被引:4,自引:0,他引:4  
本文综述了近年来国内外在阿特拉津降解菌及降解途径方面的研究进展 ,及在微生物产生的阿特拉津降解酶、其操作基因方面的研究现状 ,并提出了阿特拉津生物降解的研究趋势  相似文献   

10.
除草剂阿特拉津与丁草胺对麦穗鱼的联合毒性研究   总被引:6,自引:0,他引:6  
以除草剂阿特拉津和丁草胺为供试毒物,研究了它们对麦穗鱼的单一及联合毒性.结果表明,阿特拉津与丁草胺对麦穗鱼的96 h半致死浓度(LC50 )分别为41.64、0.33 mg/L,安全浓度(SC)分别为4.164、0.033 mg/L.因此,阿特拉津对鱼类是一种低毒除草剂,丁草胺则对鱼类具有较高的毒性.在阿特拉津与丁草胺的联合毒性试验中,24、48、96 h的相加指数分别为0.056、 0.053 、0.084,表明阿特拉津与丁草胺对麦穗鱼的联合毒性存在协同效应.  相似文献   

11.
The atrazine behaviour in soils when submitted to an electric field was studied and the applicability of the electrokinetic process in atrazine soil remediation was evaluated. Two polluted soils were used, respectively with and without atrazine residues, being the last one spiked. Four electrokinetic experiments were carried out at a laboratory scale. Determination of atrazine residues were performed by enzyme-linked immunosorbent assay (ELISA). The results show that the electrokinetic process is able to remove efficiently atrazine in soil solution, mainly towards the anode compartment: Estimations show that 30-50% of its initial amount is removed from the soil within the first 24h. A one-dimensional model is developed for simulating the electrokinetic treatment of a saturated soil containing atrazine. The movement of atrazine is modelized taking into account the diffusion transport resulting from atrazine concentration gradients and the reversed electro-osmotic flow at acidic soil pH.  相似文献   

12.
Cui H  Hwang HM  Zeng K  Glover H  Yu H  Liu Y 《Chemosphere》2002,47(9):991-999
The effect of the photosensitizer riboflavin (0, 10, 50, 100 microM) on the fate of atrazine (10 mg/l) in a freshwater environment was studied. It was found that at 100 microM riboflavin significantly enhanced the degradation of atrazine and more than 80% of atrazine in a natural water environment was depleted in 72 h. The relative contribution of microbial assemblages and the freshwater matrix to the degradation of atrazine and the degradation kinetics of atrazine were compared under different experimental conditions. The products and pathways of atrazine transformation were studied with GC-MS and HPLC with a photodiode array detector. The results show that dealkylation and alkyl chain oxidation are involved in the degradation of atrazine.  相似文献   

13.
Bench-scale sand column breakthrough experiments were conducted to examine atrazine removal in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, (i) tracers, (ii) immobilized dead cells, (iii) immobilized cells, and (iv) free cells, were performed. The atrazine biodegradation at the cell loadings of 300, 600, and 900 mg dry cells L(-1) and the infiltration rates of 1, 3, and 6 cm d(-1) were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d(-1) were 100%, 80-97%, and 50-70%, respectively. Atrazine degradation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10-100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.  相似文献   

14.
The possibility to improve atrazine degradation in soils by bioaugmentation was studied. The atrazine-mineralizing strain, Chelatobacter heintzii Cit1, was inoculated in four sterile and four non-sterile soils, at varying inoculum densities. Two soils, which had shown enhanced atrazine mineralization, were used to determine which inoculum density was capable of restoring their original mineralizing capacity after sterilization. The two other soils, with intermediate and low capacity to mineralize atrazine, were used in order to demonstrate that atrazine mineralization in such soils could be improved by inoculation. Mineralization kinetics were fitted using the Gompertz model. In the case of soils adapted to atrazine mineralization, inoculation of C. heintzii did not accelerate the rate of atrazine mineralization, which was essentially performed by the indigenous microflora. However, with soils that did not mineralize atrazine, the introduction of 10(4) cfug(-1) resulted in a 3-fold increase of atrazine mineralization capacity.  相似文献   

15.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

16.
A series of experiments were carried out to determine the effect of surfactants at low concentrations on the sorption of atrazine by natural sediments. With surfactant concentrations ranging from 0 to 20 mg/ L, anionic and cationic surfactants appreciably reduce the adsorption of atrazine, while nonionic surfactant decreases the adsorption of atrazine at concentrations equal to or less than 1 mg/L and increases adsorption at higher concentrations. Desorption of atrazine in the presence of different sodium dodecylbenzene sulfonate (SDBS) concentrations shows that a portion of the bound pesticide resists desorption in the SDBS free system. However, the addition of SDBS accelerates the desorption of atrazine. Furthermore, the nature of sediment and the contacting sequence of SDBS, at 10 mg/L, with the sediment, also influence the adsorption of atrazine. The conclusions in this study could be explained partially by the effect of the type and concentration of surfactants and the characteristics of sediments.  相似文献   

17.
Atrazine is one of the most frequently used herbicides. This usage coupled with its mobility and recalcitrant nature in deeper soils and aquifers makes it a frequently encountered groundwater contaminant. We formed biobarriers in sand filled columns by coating the sand with soybean oil; after which, we inoculated the barriers with a consortium of atrazine-degrading microorganisms and evaluated the ability of the barriers to remove atrazine from a simulated groundwater containing 1 mg L(-1) atrazine. The soybean oil provided a carbon rich and nitrogen poor substrate to the microbial consortium. Under these nitrogen-limiting conditions it was hypothesized that bacteria capable of using atrazine as a source of nitrogen would remove atrazine from the flowing water. Our hypothesis proved correct and the biobarriers were effective at removing atrazine when the nitrogen content of the influent water was low. Levels of atrazine in the biobarrier effluents declined with time and by the 24th week of the study no detectable atrazine was present (limit of detection<0.005 mg L(-1)). Larger amounts of atrazine were also removed by the biobarriers; when biobarriers were fed 16.3 mg L(-1) atrazine 97% was degraded. When nitrate (5 mg L(-1) N), an alternate source of nitrogen, was added to the influent water the atrazine removal efficiency of the barriers was reduced by almost 60%. This result supports the hypothesis that atrazine was degraded as a source of nitrogen. Poisoning of the biobarriers with mercury chloride resulted in an immediate and large increase in the amount of atrazine in the barrier effluents confirming that biological activity and not abiotic factors were responsible for most of the atrazine degradation. The presence of hydroxyatrazine in the barrier effluents indicated that dehalogenation was one of the pathways of atrazine degradation. Permeable barriers might be formed in-situ by the injection of innocuous vegetable oil emulsions into an aquifer or sandy soil and used to remove atrazine from a contaminated groundwater or to protect groundwater from an atrazine spill.  相似文献   

18.
Su YH  Zhu YG  Lin AJ  Zhang XH 《Chemosphere》2005,60(6):802-809
The uptake of atrazine by rice seedlings (Oryza sativa L.) through plant roots from nutrient solution was investigated in the presence and absence of Cd2+ over an exposure period of four weeks. It was found that both atrazine and Cd2+ were toxic to rice seedlings. Both shoot and root biomasses decreased when the seedlings were exposed to increasing atrazine or Cd2+ concentrations in nutrient solutions. In the absence of Cd2+, a linear relationship was observed between atrazine concentrations in roots/shoots and in external solution, and more atrazine is concentrated in roots than in shoots. When atrazine and Cd2+ concentrations in solution were maintained at mole ratio of 1:1, the accumulation of atrazine by seedlings was less and the seedling biomass was greater than found with other ratios, such as 1:2 or 2:1. Therefore, the formation of the complex between atrazine and Cd2+ reduced the individual toxicities. Analyses of data with the quasi-equilibrium partition model indicated that the atrazine concentrations in rice seedlings and external water were close to equilibrium. In the presence of Cd2+, however, the measured bioconcentration factor (BCF) of atrazine with roots and shoots were considerably greater. The latter findings resulted presumably from the atrazine-Cd2+ complex formation that led to a large apparent BCF.  相似文献   

19.
Atrazine, a broad-leaf herbicide, has been used widely to control weeds in corn and other crops for several decades and its extensive used has led to widespread contamination of soils and water bodies. Phytoremediation with switchgrass and other native prairie grasses is one strategy that has been suggested to lessen the impact of atrazine in the environment. The goal of this study is to characterize: (1) the uptake of atrazine into above-ground switchgrass biomass; and (2) the degradation and transformation of atrazine over time. A fate study was performed using mature switchgrass columns treated with an artificially-created agricultural runoff containing 16 ppm atrazine. Soil samples and above-ground biomass samples were taken from each column and analyzed for the presence of atrazine and its chlorinated metabolites. Levels of atrazine in both soil and plant material were detectable through the first 2 weeks of the experiment but were below the limit of detection by Day 21. Levels of deethylatrazine (DEA) and didealkylatrazine (DDA) were detected in soil and plant tissue intermittently over the course of the study, deisopropylatrazine (DIA) was not detected at any time point. A radiolabel study using [14C]atrazine was undertaken to observe uptake and degradation of atrazine with more sensitivity. Switchgrass columns were treated with a 4 ppm atrazine solution, and above-ground biomass samples were collected and analyzed using HPLC and liquid scintillation counting. Atrazine, DEA, and DIA were detected as soon as 1 d following treatment. Two other metabolites, DDA and cyanuric acid, were detected at later time points, while hydroxyatrazine was not detected at all. The percentage of atrazine was observed to decrease over the course of the study while the percentages of the metabolites increased. Switchgrass plants appeared to exhibit a threshold in regard to the amount of atrazine taken up by the plants; levels of atrazine in leaf material peaked between Days 3 and 4 in both studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号