首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

2.
Lee Y  Lee C  Yoon J 《Chemosphere》2003,51(9):963-971
This study demonstrates the importance of reaction temperature on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). In addition, we provide a mechanistic explanation for the temperature dependence of 2,4-D degradation. Thermal enhancement of 2,4-D degradation and H(2)O(2) decomposition was measured in the absence and in the presence of the z.rad;OH scavenger (t-butanol). The half-life for 2,4-D degradation was reduced by more than 70-fold in the absence of t-butanol, and by more than 700-fold, in the presence of t-butanol, when the reaction temperature was increased from 10 to 50 degrees C. In addition, similar temperature relationships were found for H(2)O(2) decomposition. The major reason for the high temperature dependence of the Fe(3+)/H(2)O(2) system in the case of 2,4-D degradation is due to the dependence of the initiation reaction of the Fe(3+)/H(2)O(2) system (i.e., Fe(3+)+H(2)O(2)-->Fe(2+)+HO(2)(z.rad;)+H(+) upon temperature), which is entirely consistent with the kinetics of the activation energy. In the presence of a z.rad;OH scavenger, the initiation reaction of the Fe(3+)/H(2)O(2) system became a determining factor of this temperature dependence, whereas in the absence of z.rad;OH scavenger, several other radical reactions played a role and this result in an apparent decrease in the activation energy for 2,4-D degradation. Moreover, the enhanced 2,4-D removal at higher temperatures did not alter H(2)O(2) utilization. The practical implications of the thermal enhancement of the Fe(3+)/H(2)O(2) system are discussed.  相似文献   

3.
Degradation rates and removal efficiencies of Metronidazole using UV, UV/H2O2, H2O2/Fe2+, and UV/H2O2/Fe2+ were studied in de-ionized water. The four different oxidation processes were compared for the removal kinetics of the antimicrobial pharmaceutical Metronidazole. It was found that the degradation of Metronidazole by UV and UV/H2O2 exhibited pseudo-first order reaction kinetics. By applying H2O2/Fe2+, and UV/H2O2/Fe2+ the degradation kinetics followed a second order behavior. The quantum yields for direct photolysis, measured at 254 nm and 200-400 nm, were 0.0033 and 0.0080 mol E(-1), respectively. Increasing the concentrations of hydrogen peroxide promoted the oxidation rate by UV/ H2O2. Adding more ferrous ions enhanced the oxidation rate for the H2O2/Fe2+ and UV/H2O2/Fe2+ processes. The major advantages and disadvantages of each process and the complexity of comparing the various advanced oxidation processes on an equal basis are discussed.  相似文献   

4.
The phenoxyalkyl acid derivative herbicides MCPA (4-chloro 2-methylphenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) were oxidized in ultrapure water by means of a monochromatic UV irradiation and by ozone, as well as by the combinations UV/H2O2 and O3/H2O2. In the direct photolysis of MCPA, the quantum yield at 20 degrees C was directly evaluated and a value of 0.150 mol Eins(-1) was obtained in the pH range 5-9, while a lower value of 0.41 x 10(-2) mol Eins(-1) was determined at pH=3. Similarly, for 2,4-D a value of 0.81 x 10(-2) mol Eins(-1) was deduced, independent of the pH of work. The influence of the additional presence of hydrogen peroxide was established in the combined process UV/H2O2, and the specific contribution of the radical pathway to the global photo-degradation was evaluated. The oxidation by ozone and by the combination O3/H2O2 was also studied, with the determination of the rate constants for the reactions of both herbicides with ozone and hydroxyl radicals at 20 degrees C. These rate constants for the direct reactions with ozone were 47.7 and 21.9 M(-1) s(-1) for MCPA and 2,4-D respectively, while the found values for the rate constants corresponding to the radical reactions were 6.6 x 10(9) and 5.1 x 10(9) M(-1) s(-1).  相似文献   

5.
The homogeneous degradation of the polychlorinated n-alkane, 1,2,9,10-tetrachlorodecane (T4C10), was studied in aqueous solutions of hydrogen peroxide, including Fenton and photo-Fenton reaction conditions. All solutions were adjusted to a pH of 2.8 and an ionic strength of 0.1 M NaClO4 prior to photolysis. T4C10 (2 x 10(-6) M) was substantially degraded by the H2O2/UV system (1.0 x 10(-2) M H2O2), with 60% disappearance in 20 min of irradiation in a photoreactor equipped with 300 nm lamps of light intensity 3.6 x 10(-5) Ein L(-1) min(-1) (established by ferrioxalate actinometry). The reaction produced stoichiometric amounts of chloride ion indicating complete dechlorination of the chlorinated n-alkane. T4C10 degraded very slowly under Fenton (Fe2+/H2O2/dark) and Fenton-like (Fe3+/H2O2/dark) conditions. However, when the same solutions were irradiated, T4C10 degraded more rapidly than in the H2O2/UV system, with 61% disappearance in 10 min of exposure. The rapid degradation is related to the enhanced degradation of hydrogen peroxide to oxidizing *OH radicals under photo-Fenton conditions. Degradation was inhibited in both the H2O2/UV and photo-Fenton systems by the addition of KI and tert-butyl alcohol due to *OH scavenging.  相似文献   

6.
Paterlini WC  Nogueira RF 《Chemosphere》2005,58(8):1107-1116
The degradation of herbicides in aqueous solution by photo-Fenton process using ferrioxalate complex (FeOx) as source of Fe2+ was evaluated under blacklight irradiation. The commercial products of the herbicides tebuthiuron, diuron and 2,4-D were used. The multivariate analysis, more precisely, the response surface methodology was applied to evaluate the role of FeOx and hydrogen peroxide concentrations as variables in the degradation process, and in particular, to define the concentration ranges that result in the most efficient degradation of the herbicides. The degradation process was evaluated by the determination of the remaining total organic carbon content (TOC), by monitoring the decrease of the concentrations of the original compounds using HPLC and by the chloride ion release in the case of diuron and 2,4-D. Under optimized conditions, 20 min were sufficient to mineralize 93% of TOC from 2,4-D and 90% of diuron, including oxalate. Complete dechlorination of these compounds was achieved after 10 min reaction. It was found that the most recalcitrant herbicide is tebuthiuron, while diuron shows the highest degradability. However, under optimized conditions the initial concentration of tebuthiuron was reduced to less than 15%, while diuron and 2,4-D were reduced to around 2% after only 1 min reaction. Furthermore, it was observed that the ferrioxalate complex plays a more important role than H2O2 in the photodegradation of these herbicides in the ranges of concentrations investigated.  相似文献   

7.
Lee Y  Jeong J  Lee C  Kim S  Yoon J 《Chemosphere》2003,51(9):901-912
The influence of various reaction parameters on herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) removal were examined in the photo/ferrioxalate/H(2)O(2) system, with regard to: (1) sulfate, phosphate, and z.rad;OH scavenger, as solution constituent; and (2) light intensity, ferrioxalate, H(2)O(2), and oxalate concentration, as operating parameter. In terms of 2,4-D removal, the photo/ferrioxalate/H(2)O(2) system has always been superior to the photo/Ferric ion/H(2)O(2) system, despite the high presence of anions (sulfate 100 mM, phosphate 1 mM) or z.rad;OH scavenger. Not only the rate of 2,4-D removal, but also the decomposition rate of H(2)O(2) and oxalate proportionally increase with light intensity. The ferrioxalate concentration determines the light absorption fraction, and thus, controls the rates of 2,4-D removal, and the decomposition of H(2)O(2) and oxalate, are predicted from kinetic formulations. The optimal concentration of H(2)O(2) and oxalate, according to the extent of the z.rad;OH scavenging reaction with these reagents, has been demonstrated for 2,4-D removal. It was found that an increasing oxalate concentration, which bears the burden of increased dissolved organic carbon (DOC), does not occur. This is because its decomposition, as a result of the photochemical reduction of the ferric oxalate complex, results in a decrease of the equivalent DOC. The importance of the key reaction factors to be considered, when applying this system to real wastewater treatment, is also discussed.  相似文献   

8.
Atrazine (6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazinedyl-2,4-diamine) was treated with ozone alone and in combination with hydrogen peroxide or UV radiation in three surface waters. Experiments were carried out in two bubble reactors operated continuously. Variables investigated were the ozone partial pressure, temperature, pH, mass flow ratio of oxidants fed: hydrogen peroxide and ozone and the type of oxidation including UV radiation alone. Residence time for the aqueous phase was kept at 10 min. Concentrations of some intermediates, including deethylatrazine, deisopropylatrazine and deethyldeisopropylatrazine, were also followed. The nature of water, specifically the alkalinity and pH were found to be important variables that affected atrazine (ATZ) removal. Surface waters with low alkalinity and high pH allowed the highest removal of ATZ to be reached. There was an optimum hydrogen peroxide to ozone mass flow ratio that resulted in the highest ATZ removal in each surface water treated. This optimum was above the theoretical stoichiometry of the process. Therefore, to reach the maximum removal of ATZ in a O3/H2O2 process, more hydrogen peroxide was needed in the surface waters treated than in ultrapure water under similar experimental conditions. In some cases, UV radiation alone resulted in the removal of ATZ higher than ozonation alone. This was likely due to the alkalinity of the surface water. Ozonation and UV radiation processes yield different amounts of hydrogen peroxide. Combined ozonations (O3/H2O2 and O3/UV) lead to ATZ removals higher than single ozonation or UV radiation but the formation of intermediates was higher.  相似文献   

9.
In this study, the photochemical degradation of livestock wastewater was carried out by the Fenton and Photo-Fenton processes. The effects of pH, reaction time, the molar ratio of Fe(2 +)/H(2)O(2), and the Fe(2 +) dose were studied. The optimal conditions for the Fenton and Photo-Fenton processes were found to be at a pH of 4 and 5, an Fe(2 +) dose of 0.066 M and 0.01 M, a concentration of hydrogen peroxide of 0.2 M and 0.1 M, and a molar ratio (Fe(2 +)/H(2)O(2)) of 0.33 and 0.1, respectively. The optimal reaction times in the Fenton and Photo-Fenton processes were 60 min and 80 min, respectively. Under the optimal conditions of the Fenton and Photo-Fenton processes, the chemical oxygen demand (COD), color, and fecal coliform removal efficiencies were approximately 70--79, 70--85 and 96.0--99.4%, respectively.  相似文献   

10.
Photodegradation of humic acids in the presence of hydrogen peroxide   总被引:4,自引:0,他引:4  
Wang GS  Liao CH  Wu FJ 《Chemosphere》2001,42(4):379-387
A batch photoreactor was used to evaluate the UV/H2O2 oxidation process for the removal of humic acids in water. A 450-W UV lamp with high-pressure mercury vapor was employed as the light source. The residues of humic acids and hydrogen peroxide were measured for assessment of process performance and understanding of process reaction behavior. The UV photolysis alone can play an important role in the degradation of humic acids. The presence of hydrogen peroxide was found to promote the degradation efficiency. However, excessive dosage of H2O2 does not further improve the degradation of humic acids. On the contrary, the lower the H2O2 dosage the higher the amount of humic acids which can be removed. Aeration with air does not favor the removal efficiency of humic acids as the oxidation lasts for a sufficiently long time. The presence of carbonate species deteriorates the humic acids' removal, whereas it results in a larger amount of H2O2 decomposition.  相似文献   

11.
Chen QM  Yang C  Goh NK  Teo KC  Chen B 《Chemosphere》2004,55(3):339-344
A study on the destruction of 1,3-dinitrobenzene (1,3-DNB) in aqueous solution was carried out under ultraviolet (UV) irradiation alone and UV irradiation in the presence of hydrogen peroxide (H2O2). The combination of UV and H2O2 is significantly effective in degrading 1,3-DNB in terms of initial reaction rate and the mineralization of organic carbons. The photodegradation process can be influenced in certain extent by increasing the content of H2O2 and the acidity of reaction matrices. It was found that a variety of phenolic intermediates and inorganic acid were formed via hydroxyl radicals attacking the parent compound. The UV/H2O2 oxidation of 1,3-DNB was characterized by pseudo-zero order reaction for the degradation of 1,3-DNB with a 20 times enhanced rate constant of 1.36 x 10(-7) Ms(-1) and the initial rate constant was dependent on the initial concentration of 1,3-DNB.  相似文献   

12.
Chu W  Kwan CY  Chan KH  Chong C 《Chemosphere》2004,57(9):1165-1171
The Fenton's oxidation kinetics of herbicide 2,4-D at various [Fe(II)] and [H(2)O(2)] combinations was investigated and modelled through an unconventional approach. The reaction kinetics of 2,4-D degradation demonstrated a two-stage pattern of decay, where a very fast reactive stage was followed by a retardation stage due to the depletion of oxidants and to the competitive side-reactions of the intermediates (including 2,4-dichlorophenol, chlorohydroquinone and 2,6-dichlororesorcinol). A model characterized by two newly established constants, the initial decay rate and the maximum oxidative capacity, was proposed and proven capable of describing the two-stage process, which cannot easily be described by conventional first- or second-order kinetics approaches.  相似文献   

13.
Oxidation of TNT by photo-Fenton process   总被引:4,自引:0,他引:4  
Liou MJ  Lu MC  Chen JN 《Chemosphere》2004,57(9):1107-1114
A series of photo-Fenton reactions have been performed for the degradation of 2,4,6-trinitrotoluene (TNT) in a 4.2-l reactor. The degradation reaction rate of TNT followed a pseudo-first-order behavior; and the rate constants for 2.4mW cm(-2)UV only, 2.4mW cm(-2)UV/H(2)O(2), Fenton, photo-Fenton (2.4mW cm(-2)) and photo-Fenton (4.7mW cm(-2)) were 0.002min(-1), 0.007min(-1), 0.014min(-1), 0.025min(-1) and 0.037min(-1), respectively. Increasing the intensity of UV light, and the concentrations of ferrous ions and hydrogen peroxide promoted the oxidation rate under the experimental conditions in this study. The weighting factor (f), the Fe(II)-promoted efficiency (r) and the promoted-UV light efficiency (p) were calculated to clarify their effects on the TNT oxidation. Moreover, the inhibition effect of hydroxyl radical was also observed in both Fenton and photo-Fenton oxidation when the concentration of Fe(II) were higher than 2.88mM. Solid phase micro-extraction was first applied to the separation of the organic byproducts from TNT oxidation. GC/MS was employed to identify the byproducts during the Fenton and photo-Fenton oxidation of TNT. These compounds were clarified as 1,3,5-trinitrobenzene, 1-methyl-2,4-dinitrobenzene 2,5-dinitrobenzoic acid and 1,3-dinitrobenzene. By these byproducts, the mechanisms of the methyl group oxidation, decarboxylation, aromatic ring breakage, and hydrolysis can be recognized and demonstrated. The pathway of TNT oxidation by photo-Fenton process was also proposed in this study.  相似文献   

14.
Concentration of 2,4-dichlorophenoxyacetic acid (2,4-D) may affect its degradation kinetics in advanced oxidation systems, and combinations of two or more systems can be more effective for its mineralization at low concentration levels. Degradations and mineralizations of 0.045mM 2,4-D using O(3), O(3)/UV, UV/TiO(2) and O(3)/UV/TiO(2) systems were compared, and influence of reaction temperature on the mineralization in O(3)/UV/TiO(2) system was investigated. 2,4-D degradations by O(3), O(3)/UV and UV/TiO(2) systems were similar to the results of earlier investigations with higher 2,4-D concentrations. The degradations and total organic carbon (TOC) removals in the four systems were well described by the first-order reaction kinetics. The degradation and removal were greatly enhanced in O(3)/UV/TiO(2) system, and further enhancements were observed with larger O(3) supplies. The enhancements were attributed to hydroxyl radical (()OH) generation from more than one reaction pathway. The degradation and removal in O(3)/UV/TiO(2) system were very efficient with reaction temperature fixed at 20 degrees C. It was suspected that reaction temperature might have influenced ()OH generation in the system, which needs further attention.  相似文献   

15.
Light regime, riboflavin, and pH effects on 2,4-D photodegradation in water   总被引:1,自引:0,他引:1  
A laboratory study was conducted to determine the effects of light regime, riboflavin, and pH on photodegradation of 2,4-D in aqueous solution. In controlled-environment chamber experiments, riboflavin sensitized 2,4-D photolysis in a concentration-dependent manner under both attenuated UV (-UV) and enhanced UV (+UV) light regimes. The photolysis half-life of 2,4-D in solutions containing 10 mg L-1 riboflavin was 9.7 and 12.5 h when exposed to +UV and -UV, respectively, compared to no photolysis in the absence of riboflavin. In contrast, the extrapolated half-life of 2,4-D in solutions containing 2.5 mg L-1 riboflavin was 46 h under +UV and 72 h under -UV. The rate of 2,4-D photolysis in the presence of riboflavin increased under both light regimes as initial pH of the solution was decreased from 7.5 to 4.5. The half-life of 2,4-D in the presence of 10 mg L-1 riboflavin at pH 4.5 and exposed to +UV was 1.6 h. Lumichrome, a principal photoproduct of riboflavin, did not photosensitize 2,4-D. Concentrations of 2,4-dichlorophenol formed as a result of riboflavin-sensitized 2,4-D photolysis were higher under the -UV than the +UV regime. These results indicate that riboflavin concentration, solution pH, and light regime are interacting factors that may be manipulated to enhance rates of aqueous 2,4-D photolysis.  相似文献   

16.
A comparative study is made of 12 methods of chemical oxidation applied to degrading p-hydroxybenzoic acid in aqueous solution. The oxidation processes tested were: UV, O3, UV/TiO2, O3/Fe2+, O3/H2O2, O3/UV, UV/H2O2, H2O2/Fe2+, H2O2/Fe2+/O3, UV/H2O2/O3, H2O2/Fe2+/UV and O3/UV/H2O2/Fe2+. The 12 processes were ranked by reactivity. In a kinetic study, the overall kinetic rate constant was split up into three components: direct oxidation by UV irradiation (photolysis), direct oxidation by ozone (ozonation), and oxidation by free radicals (mainly OH*).  相似文献   

17.
Monteagudo JM  Durán A 《Chemosphere》2006,65(7):1242-1248
The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.  相似文献   

18.
The technique of flash photolysis followed by high-performance liquid chromatography has been applied to the study of the photodegradation of phenol (I) in the presence of hydrogen peroxide. Progress of the reaction of I (0.1 mM) in undegassed aqueous solution ([H2O2]/[I] = 200/l) was observed by using multiple flashes (16 J). Analysis after a single flash indicated that catechol and hydroquinone were the primary products of the reaction. The reaction was found to be independent of pH in the range 7.0-9.0, but the yield of degradation decreased at pH > 9.0 and at pH < 7.0. The effects of the hydrogen peroxide concentration and flash energy on the chemical yield of the pollutant degradation, and product formation, were investigated as well. The mechanism of the reaction is discussed. A possibility of the application of flashlamps as powerful sources of the UV irradiation in industrial reactors for wastewater treatment is suggested.  相似文献   

19.
Chu W  Chan KH  Kwan CY  Lee CK 《Chemosphere》2004,57(3):171-178
Unlike the conventional first- or second-order model, a novel approach to design for the removal of 2,4-dichlorophenoxy (2,4-D) by the UV-catalytic oxidation process (UVCOP) was investigated. Two distinctive parameters, initial decay rate and maximum oxidative capacity, were characterized. By using these parameters, the performance of the degradation of 2,4-D by UVCOP regarding to the reagent dosages could be successfully predicted. Low concentrations of ferrous ion was found to be a rate-limiting factor for the process while the dosage of hydrogen peroxide was concluded as a dominant species in determining the maximum oxidation capacities. This information can be used to optimize the treatment process and achieve the expected performance target; an "optimal-dose model" was developed accordingly. The model is an intelligent and useful tool to evaluate the optimal doses of hydrogen peroxide with the minimum dose of ferrous ion, which leads to a better design of the treatment process.  相似文献   

20.
Comparison of the effects and kinetics of UV photolysis and four advanced oxidation systems (ozone, ozone/hydrogen peroxide, ozone/UV radiation and UV radiation/hydrogen peroxide) for the removal of simazine from water has been investigated. At the conditions applied, the order of reactivity was ozone < ozone/hydrogen peroxide < UV radiation < ozone/UV radiation and UV radiation/hydrogen peroxide. Rate constants of the reactions between ozone and simazine and hydroxyl radical and simazine were found to be 8.7 M-1s-1 and 2.1 x 10(9) M-1s-1, respectively. Also, a quantum yield of 0.06 mol.photon-1 was found for simazine at 254 nm UV radiation. The high value of the quantum yield corroborated the importance of the direct photolysis process. Percentage contributions of direct reaction with ozone, reaction with hydroxyl radicals and direct photolysis were also quantified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号