首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
To help improve the prediction of bacteria travel distances in aquifers laboratory experiments were conducted to measure the distant dependent sticking efficiencies of two low attaching Escherichia coli strains (UCFL-94 and UCFL-131). The experimental set up consisted of a 25 m long helical column with a diameter of 3.2 cm packed with 99.1% pure-quartz sand saturated with a solution of magnesium sulfate and calcium chloride. Bacteria mass breakthrough at sampling distances ranging from 6 to 25.65 m were observed to quantify bacteria attachment over total transport distances (α(L)) and sticking efficiencies at large intra-column segments (α(i)) (>5m). Fractions of cells retained (F(i)) in a column segment as a function of α(i) were fitted with a power-law distribution from which the minimum sticking efficiency defined as the sticking efficiency of 0.001% bacteria fraction of the total input mass retained that results in a 5 log removal were extrapolated. Low values of α(L) in the order 10(-4) and 10(-3) were obtained for UCFL-94 and UCFL-131 respectively, while α(i)-values ranged between 10(-6) to 10(-3) for UCFL-94 and 10(-5) to 10(-4) for UCFL-131. In addition, both α(L) and α(i) reduced with increasing transport distance, and high coefficients of determination (0.99) were obtained for power-law distributions ofα(i) for the two strains. Minimum sticking efficiencies extrapolated were 10(-7) and 10(-8) for UCFL-94 and UCFL-131, respectively. Fractions of cells exiting the column were 0.19 and 0.87 for UCFL-94 and UCL-131, respectively. We concluded that environmentally realistic sticking efficiency values in the order of 10(-4) and 10(-3) and much lower sticking efficiencies in the order 10(-5) are measurable in the laboratory, Also power-law distributions in sticking efficiencies commonly observed for limited intra-column distances (<2m) are applicable at large transport distances(>6m) in columns packed with quartz grains. High fractions of bacteria populations may possess the so-called minimum sticking efficiency, thus expressing their ability to be transported over distances longer than what might be predicted using measured sticking efficiencies from experiments with both short (<1m) and long columns (>25 m). Also variable values of sticking efficiencies within and among the strains show heterogeneities possibly due to variations in cell surface characteristics of the strains. The low sticking efficiency values measured express the importance of the long columns used in the experiments and the lower values of extrapolated minimum sticking efficiencies makes the method a valuable tool in delineating protection areas in real-world scenarios.  相似文献   

2.
Breakthrough curves, on a semi-log scale, from tests in porous media with block-input of viruses, bacteria, protozoa and colloidal particles often exhibit a typical skewness: a rather slowly rising limb and a smooth transition of a declining limb to a very long tail. One-site kinetic models fail to fit the rising and declining limbs together with the tail satisfactorily. Inclusion of an equilibrium adsorption site does not seem to improve simulation results. This was encountered in the simulation of breakthrough curves from a recent field study on the removal of bacteriophages MS2 and PRD1 by passage through dune sand. In the present study, results of laboratory experiments for the study of this issue are presented. Breakthrough curves of salt and bacteriophages MS2, PRDI, and phiX174 in 1 D column experiments have been measured. One- and two-site kinetic models have been applied to fit and predict breakthrough curves from column experiments. The two-site model fitted all breakthrough curves very satisfactorily, accounting for the skewness of the rising limb as well as for the smooth transition of the declining limb to the tail of the breakthrough curve. The one-site model does not follow the curvature of the breakthrough tail, leading to an overestimation of the inactivation rate coefficient for attached viruses. Interaction with kinetic site 1 is characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 is fast. Inactivation of viruses and interaction with kinetic site 2 provide only a minor contribution to removal. Virus removal is mainly determined by the attachment to site 1. Bacteriophage phiX174 attached more than MS2 and PRD1, which can be explained by the greater electrostatic repulsion that MS2 and PRD1 experience compared to the less negatively charged phiX174.  相似文献   

3.
We present results from experiments on the migration of 137Cs through columns containing quartz sand. Times for 137Cs movement through these columns and the quantity of 137Cs adsorbed by the sand decreased as the ionic strength of the pore water increased from 0.002 to 0.1 m. The breakthrough curves were characterized by a slow approach towards steady-state concentrations as well as by long tails, indicating that 137Cs adsorption to the sand grains was, at least in part, controlled by rate-limited reactions. Various formulations for solute mass transfer were tested for their ability to fit the experimental breakthrough curves. Based on a statistical analysis, a nonlinear, two-site model was identified as the most appropriate for describing the suite of experimental data. Variation in the model parameter that describes the rate of 137Cs adsorption to the sand showed no consistent pattern with changes in ionic strength. In contrast, model parameters describing the sorption capacity of the sand grains and the fraction of kinetic sorption sites on the sand decreased with increasing ionic strength. The parameter describing the rate of 137Cs desorption varied directly with changes in ionic strength.  相似文献   

4.
The main objective of this study was to evaluate the combined effects of grain size and pore water velocity on the transport in water saturated porous media of three waterborne fecal indicator organisms (Escherichia coli, MS2, and ΦX174) in laboratory-scale columns packed with clean quartz sand. Three different grain sizes and three pore water velocities were examined and the attachment behavior of Escherichia coli, MS2, and ΦX174 onto quartz sand was evaluated. The mass recoveries of the biocolloids examined were shown to be highest for Escherichia coli and lowest for MS2. However, no obvious relationships between mass recoveries and water velocity or grain size could be established from the experimental results. The observed mean dispersivity values for each sand grain size were smaller for bacteria than coliphages, but higher for MS2 than ΦX174. The single collector removal and collision efficiencies were quantified using the classical colloid filtration theory. Furthermore, theoretical collision efficiencies were estimated only for E. coli by the Interaction-Force-Boundary-Layer, and Maxwell approximations. Better agreement between the experimental and Maxwell theoretical collision efficiencies were observed.  相似文献   

5.
Bacterial transport through cores of intact, glacial-outwash aquifer sediment was investigated with the overall goal of better understanding bacterial transport and developing a predictive capability based on the sediment characteristics. Variability was great among the cores. Normalized maximum bacterial-effluent concentrations ranged from 5.4x10(-7) to 0.36 and effluent recovery ranged from 2.9x10(-4) to 59%. Bacterial breakthrough was generally rapid with a sharp peak occurring nearly twice as early as the bromide peak. Bacterial breakthrough exhibited a long tail of relatively constant concentration averaging three orders of magnitude less than the peak concentration for up to 32 pore volumes. The tails were consistent with non-equilibrium detachment, corroborated by the results of flow interruption experiments. Bacterial breakthrough was accurately simulated with a transport model incorporating advection, dispersion and first-order non-equilibrium attachment/detachment. Relationships among bacterial transport and sediment characteristics were explored with multiple regression analyses. These analyses indicated that for these cores and experimental conditions, easily-measurable sediment characteristics--median grain size, degree of sorting, organic-matter content and hydraulic conductivity--accounted for 66%, 61% and 89% of the core-to-core variability in the bacterial effective porosity, dispersivity and attachment-rate coefficient, respectively. In addition, the bacterial effective porosity, median grain size and organic-matter content accounted for 76% of the inter-core variability in the detachment-rate coefficient. The resulting regression equations allow prediction of bacterial transport based on sediment characteristics and are a possible alternative to using colloid-filtration theory. Colloid-filtration theory, used without the benefit of running bacterial transport experiments, did not as accurately replicate the observed variability in the attachment-rate coefficient.  相似文献   

6.
In the Hesbaye region in Belgium, tracer tests performed in variably saturated fissured chalk rocks presented very contrasting results in terms of transit times, according to artificially controlled water recharge conditions prevailing during the experiments. Under intense recharge conditions, tracers migrated across the partially or fully saturated fissure network, at high velocity in accordance with the high hydraulic conductivity and low effective porosity (fracture porosity). At the same time, a portion of the tracer was temporarily retarded in the almost immobile water located in the matrix. Under natural infiltration conditions, the fissure network remained inactive. Tracers migrated downward through the matrix, at low velocity in relation with the low hydraulic conductivity and the large porosity of the matrix. Based on these observations, Brouyère et al. (2004a) [Brouyère, S., Dassargues, A., Hallet, V., 2004a. Migration of contaminants through the unsaturated zone overlying the Hesbaye chalky aquifer in Belgium: a field investigation, J. Contam. Hydrol., 72 (1-4), 135-164, doi: 10.1016/j.conhyd.2003.10.009] proposed a conceptual model in order to explain the migration of solutes in variably saturated, dual-porosity, dual-permeability chalk. Here, mathematical and numerical modelling of tracer and contaminant migration in variably saturated fissured chalk is presented, considering the aforementioned conceptual model. A new mathematical formulation is proposed to represent the unsaturated properties of the fissured chalk in a more dynamic and appropriate way. At the same time, the rock water content is partitioned between mobile and immobile water phases, as a function of the water saturation of the chalk rock. The groundwater flow and contaminant transport in the variably saturated chalk is solved using the control volume finite element method. Modelling the field tracer experiments performed in the variably saturated chalk shows the adequacy and usefulness of the new conceptual, mathematical and numerical model.  相似文献   

7.
8.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.  相似文献   

9.
10.
Migration of concentrated NaNO3 solutions in homogeneous packs of pre-wetted silica sands was investigated using a light transmission system. Solutions of 5 molal NaNO3 were found to migrate downward 24-62% faster than pure water, in an unstable, fingered manner. This behavior was attributed primarily to a surface tension induced, non-zero apparent contact angle between the imbibing and the resident fluids. For saline solutions of similar surface tension to that of pure water (achieved by the addition of 2% methanol), the migration rates and plume shapes were comparable to that of water, demonstrating that density was not the primary source of the observed differences in migration patterns. At depths where resident saturation increased above residual, the migration process appeared to occur via film flow with slight changes in saturation (<4%), rather than in a series of abrupt jumps, as observed at shallower depths. A method for contact angle scaling was used to illustrate the effects of non-zero contact angles on capillary pressure-saturation curves.  相似文献   

11.
The transport of bacteriophage PRD1, a model virus, was studied in columns containing sediment mixtures of quartz sand with goethite-coated sand and using various solutions consisting of monovalent and divalent salts and humic acid (HA). Without HA and in the absence of sand, the inactivation rate of PRD1 was found to be as low as 0.014 day(-1) (at 5+/-3 degrees C), but in the presence of HA it was much lower (0.0009 day(-1)), indicating that HA helps PRD1 to survive. When the fraction of goethite in the sediment was increased, the removal of PRD1 also increased. However, in the presence of HA, C/C0 values of PRD1 increased by as much as 5 log units, thereby almost completely eliminating the effect of addition of goethite. The sticking efficiency was not linearly dependent on the amount of goethite added to the quartz sand; this is apparently due to surface charge heterogeneity of PRD1. Our results imply that, in the presence of dissolved organic matter (DOM), viruses can be transported for long distances thanks to two effects: attachment is poor because DOM has occupied favourable sites for attachment and inactivation of virus may have decreased. This conclusion justifies making conservative assumptions about the attachment of viruses when calculating protection zones for groundwater wells.  相似文献   

12.
Concerning the transport of the veterinary antibiotic sulfadiazine (SDZ) little is known about its possible degradation during transport. Also its sorption behaviour is not yet completely understood. We investigated the transport of SDZ in soil columns with a special emphasis on the detection of transformation products in the outflow of the soil columns and on modelling of the concentration distribution in the soil columns afterwards. We used disturbed soil columns near saturation, packed with a loamy sand and a silty loam. SDZ was applied as a 0.57 mg L(-1) solution at a constant flow rate of 0.25 cm h(-1) for 68 h. Breakthrough curves (BTC) of SDZ and its transformation products 4-(2-iminopyrimidin-1(2H)-yl)aniline and 4-hydroxy-SDZ were measured for both soils. For the silty loam we additionally measured a BTC for an unknown transformation product which we only detected in the outflow samples of this soil. After the leaching experiments the (14)C-concentration was quantified in different layers of the soil columns. The transformation rates were low with mean SDZ mass fractions in the outflow samples of 95% for the loamy sand compared to 97% for the silty loam. The formation of 4-(2-iminopyrimidin-1(2H)-yl)aniline appears to be light dependent and did probably not occur in the soils, but afterwards. In the soil columns most of the (14)C was found near the soil surface. The BTCs in both soils were described well by a model with one reversible (kinetic) and one irreversible sorption site. Sorption kinetics played a more prominent role than sorption capacity. The prediction of the (14)C -concentration profiles was improved by applying two empirical models other than first order to predict irreversible sorption, but also these models were not able to describe the (14)C concentration profiles correctly. Irreversible sorption of sulfadiazine still is not well understood.  相似文献   

13.
Column experiments were conducted to validate a screening model predicting the influence of pentachlorophenol (PCP) pole-treating oil on the vertical migration of its impurities, chlorinated dioxins and furans (PCDD/Fs). PCP pole-treating oil (15 mL d−1) and water (20 mL d−1) were added daily to the top of sand and organic soil columns during 35 d. Column soil samples were analyzed to determine concentrations of hydrocarbons and PCDD/Fs at several depths in the columns (0-30 cm) and their evolution in time (7, 14, 21 and 35 d).The model predicted a significant vertical migration of PCDD/Fs due to the presence of oil as a free phase and PCDD/Fs were found in the different column layers at concentrations consistent with model predictions (same order of magnitude). Measured PCDD/Fs concentrations are in total disagreement with literature data and with model prediction in the absence of oil free phase, which implies PCDD/F properties alone cannot be used to predict their fate in the current context: the influence of PCP pole-treating oil must be accounted for to properly explain their migration.  相似文献   

14.
In a recent field study on dune recharge, bacteriophages MS2 and PRD1 were found to be removed 3 log10 over the first 2.4 m and only 5 log10 over the next 27 m. To understand the causes of this nonlinear removal, column experiments were carried out under conditions similar to the field: same recharge water, temperature (5 +/- 3 degrees C) and pore water velocity (1.5 m day(-1)). Soil samples were taken along a streamline between the recharge canal and the first monitoring well. Bacteriophage phiX174 was included for comparison. The high initial removal in the field was found not to be due to heterogeneity of phage suspensions but to soil heterogeneity. Phage removal rates correlated strongly positively with soil organic carbon content, and relatively strongly positively with silt content and the presence of ferric oxyhydroxides. Soil organic carbon content, silt content and the presence of ferric oxyhydroxides were found to decrease exponentially with travel distance. Removal rates of phiX174 were found to be 3-10 times higher than those of MS2 and PRD1 due to the lower electrostatic repulsion that the less negatively charged phiX174 experiences. It is suggested that the high initial removal in the field is due to the presence of favorable sites for attachment formed by ferric oxyhydroxides that decrease exponentially with travel distance. Similar removal rates may be found at both laboratory and field scale. However, due to local variations at field scale detailed knowledge on soil heterogeneity may be needed to enable a reliable prediction of removal.  相似文献   

15.
Knowledge of the factors that influence the fate and transport of viruses in porous media is very important for accurately determining groundwater vulnerability and for developing protective regulations. In this study, six saturated sand column experiments were performed to examine the effects of a positively charged Al-oxide, which was coated on sand particles, on the retention and transport of viruses (phiX174 and MS-2) in background solutions of different ionic strength and composition. We found that the Al-oxide coating on sand significantly removed viruses during their transport in a phosphate buffered saline (PBS) solution. Mass balance calculations showed that 34% of the input MS-2 was inactivated/irreversibly sorbed on the surface of Al-oxide coated sand whereas 100% of phiX174 was recovered. Results from this study also indicated that higher ionic strength facilitated the transport of both phiX174 and MS-2 through the Al-oxide coated sand. This was attributed to the effect of ion shielding, which at higher ionic strength decreased the electrostatic attraction between the viral particles and the sand surface and consequently decreased virus sorption. Strong effect of the ionic strength indicates that an outer-sphere complexation mechanism was responsible for the virus sorption on the Al-oxide coated sand. Ion composition of the background solutions was also found to be a significant factor in influencing virus retention and transport. Virus transport was enhanced in the presence of phosphate (HPO(4)(2-)) as compared to bicarbonate (HCO(3)(-)), and the effect of HPO(4)(2-) was more significant on MS-2 than on phiX174. The presence of bivalent cations (Ca(2+) and Mg(2+)) increased virus transport because the cations partially screened the negative charges on the viruses therefore decreased the electrostatic attraction between the positively charged sand surface and the negatively charged viruses. Mass recovery data indicated that bivalent cations gave rise to a certain degree of inactivation/irreversibly sorption of phiX174 on the surface of Al-oxide coated sand. On the contrary, the bivalent cations appeared to have protected MS-2 from inactivation/irreversibly sorption. This study provides some insights into the mechanisms responsible for virus retention and transport in porous media.  相似文献   

16.
17.
The effects of phosphate (P) and zeolite (Z) -built detergents on leaching of N and P through sand columns simulating septic system drainfields were examined in laboratory columns. To simulate mound septic system drainfields, paired sets of columns were dosed intermittently with septic tank effluent from households using P- or Z-built detergent. Two other paired sets of columns were flooded with P- or Z-effluent to simulate new conventional septic system drainfields; after clogging mats or “crusts” developed at infiltration surface, the subsurfaces of the columns were aerated to simulate mature (crusted) conventional septic system drainfields. NO3 loading in leachate was 1.1 times higher and ortho-P loading was 4.3 times lower when columns were dosed with Z- than with P-effluent. Dosed columns removed P poorly; total phosphorus (TP) loading in leachate was 81 and 19 g m−2 yr−1 with P- and Z-effluent, respectively. In flooded columns 1.3, 2.0 and 1.8 times more NH4, organic nitrogen (ON) and total nitrogen (TN) respectively, were leached with Z- than with P-effluent; NO3 leaching was similar. Flooded columns removed P efficiently; TP leached through flooded systems was 2.5 and 1.4 g m−2 yr−1 with P- and Z effluent, respectively. Crusted columns fed Z-effluent leached 1.2, 2.6, 1.4 and 2.1 times more NH4, NO3, ON and TN, respectively, than those with P-effluent but 1.8 times less TP. Crusted columns removed P satisfactorily: 8.2 and 4.6 g m−2 yr−1 TP with P- and Z-effluent, respectively. The P-built detergent substantially improves the efficiency of N removal with satisfactory P removal in columns simulating conventional septic system drainfield. Simultaneous removal of N and P under flooded conditions might be explained by precipitation of struvite-type minerals. Dosed system drainfields were less efficient in removing N and P compared to flooded and crusted system drainfelds.  相似文献   

18.
Humic colloid-borne migration of uranium in sand columns   总被引:3,自引:0,他引:3  
Column experiments were carried out to investigate the influence of humic colloids on subsurface uranium migration. The columns were packed with well-characterized aeolian quartz sand and equilibrated with groundwater rich in humic colloids (dissolved organic carbon (DOC): 30 mg dm(-3)). U migration was studied under an Ar/1% CO2 gas atmosphere as a function of the migration time, which was controlled by the flow velocity or the column length. In addition, the contact time of U with groundwater prior to introduction into a column was varied. U(VI) was found to be the dominant oxidation state in the spiked groundwater. The breakthrough curves indicate that U was transported as a humic colloid-borne species with a velocity up to 5% faster than the mean groundwater flow. The fraction of humic colloid-borne species increases with increasing prior contact time and also with decreasing migration time. The migration behavior was attributed to a kinetically controlled association/dissociation of U onto and from humic colloids and also a subsequent sorption of U onto the sediment surface. The column experiments provide an insight into humic colloid-mediated U migration in subsurface aquifers.  相似文献   

19.
Recharge of waste water in an unconsolidated poorly sorted alluvial aquifer is a complex process, both physically and hydrochemically. The aim of this paper is to analyse and conceptualise vertical transport mechanisms taking place in an urban area of extensive wastewater infiltration by analysing and combining the water balance, the microbial (Escherichia coli) mass balance, and the mass balance for dissolved solutes. For this, data on sediment characteristics (grain size, organic carbon, reactive iron, and calcite), groundwater levels, and concentrations of E. coli in groundwater and waste water were collected. In the laboratory, data on E. coli decay rate coefficients, and on bacteria retention characteristics of the sediment were collected via column experiments. The results indicated that shallow groundwater, at depths of 50 m below the surface, was contaminated with E. coli concentrations as high as 10(6) CFU/100 mL. In general, E. coli concentrations decreased only 3 log units from the point of infiltration to shallow groundwater. Concentrations were lower at greater depths in the aquifer. In laboratory columns of disturbed sediments, bacteria removal was 2-5 log units/0.5 cm column sediment. Because of the relatively high E. coli concentrations in the shallow aquifer, transport had likely taken place via a connected network of pores with a diameter large enough to allow bacterial transport instead of via the sediment matrix, which was inaccessible for bacteria, as was clear from the column experiments. The decay rate coefficient was determined from laboratory microcosms to be 0.15 d(-1). Assuming that decay in the aquifer was similar to decay in the laboratory, then the pore water flow velocity between the point of infiltration and shallow groundwater, coinciding with a concentration decrease of 3 log units, was 0.38 m/d, and therefore, transport in this connected network of pores was fast. According to the water balance of the alluvial aquifer, determined from transient groundwater modelling, groundwater flow in the aquifer was mainly in vertical downward direction, and therefore, the mass balance for dissolved solutes was simulated using a 1D transport model of a 200 m column of the Quaternary Alluvium aquifer. The model, constructed with PHREEQC, included dual porosity, and was able to adequately simulate removal of E. coli, cation-exchange, and nitrification. The added value of the use of E. coli in this study was the recognition of relatively fast transport velocities occurring in the aquifer, and the necessity to use the dual porosity concept to investigate vertical transport mechanisms. Therefore, in general and if possible, microbial mass balances should be considered more systematically as an integral part of transport studies.  相似文献   

20.
Chi FH  Amy GL 《Chemosphere》2004,55(4):515-524
In groundwater systems, dissolved natural organic matter (NOM) can influence the mobility of organic contaminants by altering the contaminant behavior in water and solid phases. The transport of anthracene and benz(a)anthracene (B(a)A) was studied in the presence and absence of NOM and/or soil organic matter (SOM) in column experiments. The results show that sorption are related to the properties of polycyclic aromatic hydrocarbons (PAHs), NOM and SOM. In the Fe-quartz media, the amount of NOM (20 mg/l) in solution had a little effect on increasing the apparent solubility of anthracene and countering increased anthracene sorption. In the natural (Bemidji) soil, Suwannee river fulvic acid (SRFA, 20 mg/l) and Suwannee river humic acid (SRHA) in water did not compete with SOM for anthracene, indicating that SOM has higher partition efficiency for anthracene. It was also observed that slow diffusion through an organic phase apparently caused most of the observed tailing in column breakthrough curves (BTCs). Even though the fOC of washed Bemidji sediment was very low, the transport of B(a)A was retarded significantly, however, and the transport of B(a)A was shown to be facilitated by dissolved NOM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号