首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

2.
Aerobic biodegradation of dichloroethylenes in surface and subsurface soils   总被引:5,自引:0,他引:5  
Klier NJ  West RJ  Donberg PA 《Chemosphere》1999,38(5):1175-1188
Laboratory studies were conducted to examine the aerobic biodegradation of dichloroethylenes (cis-1,2-DCE, trans-1,2-DCE and 1,1-DCE) in soil and groundwater. Authentic surface and subsurface materials with no reported DCE exposure history were used. All DCE isomers were observed to biodegrade to varying degrees in the soils examined. Use of radiolabeled [14C] test chemicals allowed correlation of DCE disappearance with mineralization to 14CO2. Study results indicate that naturally occurring microorganisms in soil and groundwater are capable of degrading cis-1,2-, trans-1,2- and 1,1-DCE without laboratory supplementation of exogenous organic nutrients, or previous exposure history. The data further suggest that degradative potential may vary with soil type, DCE isomer structure, and concentration.  相似文献   

3.
The worldwide used herbicide dichlobenil (2,6-dichlorobenzonitrile) has resulted in widespread presence of its metabolite 2,6-dichlorobenzamide (BAM) in surface water and groundwater. To evaluate the potential for natural attenuation of this BAM pollution in groundwater, we studied the degradation of BAM and dichlobenil in 16 samples of clayey till, unconsolidated sand and limestone, including sediments from both oxidized and reduced conditions. The degradation of dichlobenil occurred primarily in the upper few meters below surface, although dichlobenil was strongly sorbed to these sediments. However, the degradation of dichlobenil to BAM could not be correlated to either sorption, water chemistry, composition of soils or sediments. Degradation of dichlobenil to BAM was limited (<2% degraded) in the deeper unsaturated zones, and no degradation was observed in aquifer sediments. This illustrates, that dichlobenil transported to aquifers does not contribute to the BAM-contamination in aquifers. A small, but significant degradation of BAM was observed in the upper part of the unsaturated zones in sandy sediments, but no degradation was observed in the clayey till sediment or in the deeper unsaturated zones. The insignificant degradation of BAM in aquifer systems shows that BAM pollution detected in aquifers will appear for a long time; and consequently the potential for natural attenuation of BAM in aquifer systems is limited.  相似文献   

4.
The catabolic activity with respect to the systemic herbicide isoproturon was determined in soil samples by (14)C-radiorespirometry. The first experiment assessed levels of intrinsic catabolic activity in soil samples that represented three dissimilar soil series under arable cultivation. Results showed average extents of isoproturon mineralisation (after 240 h assay time) in the three soil series to be low. A second experiment assessed the impact of addition of isoproturon (0.05 microg kg(-1)) into these soils on the levels of catabolic activity following 28 days of incubation. Increased catabolic activity was observed in all three soils. A third experiment assessed levels of intrinsic catabolic activity in soil samples representing a single soil series managed under either conventional agricultural practice (including the use of isoproturon) or organic farming practice (with no use of isoproturon). Results showed higher (and more consistent) levels of isoproturon mineralisation in the soil samples collected from conventional land use. The final experiment assessed the impact of isoproturon addition on the levels of inducible catabolic activity in these soils. The results showed no significant difference in the case of the conventional farm soil samples while the induction of catabolic activity in the organic farm soil samples was significant.  相似文献   

5.
The purpose of this study was to assess atrazine mineralization in surface and subsurface samples retrieved from vertical cores of agricultural soils from two farm sites in Ohio. The Defiance site (NW-Ohio) was on soybean-corn rotation and Piketon (S-Ohio) was on continuous corn cultivation. Both sites had a history of atrazine application for at least a couple of decades. The clay fraction increased at the Defiance site and the organic matter and total N content decreased with depth at both sites. Mineralization of atrazine was assessed by measurement of 14CO2 during incubation of soil samples with [U-ring-14C]-atrazine. Abiotic mineralization was negligible in all soil samples. Aerobic mineralization rate constants declined and the corresponding half-lives increased with depth at the Defiance site. Anaerobic mineralization (supplemented with nitrate) was mostly below the detection at the Defiance site. In Piketon samples, the kinetic parameters of aerobic and anaerobic biomineralization of atrazine displayed considerable scatter among replicate cores and duplicate biometers. In general, this study concludes that data especially for anaerobic biomineralization of atrazine can be more variable as compared to aerobic conditions and cannot be extrapolated from one agricultural site to another.  相似文献   

6.
Dinetofuran (DNT), imidacloprid (IMD) and thiamethoxam (THM) are among the neonicotinoid insecticides widely used for managing insect pests of agricultural and veterinary importance. Environmental occurrence of neonicotinoid in post-application scenario poses unknown issues to human health and ecology. A sorption kinetic study provides much needed information on physico-chemical interaction of neonicotinoid with soil material. In this research study, time-dependent sorption behavior of DNT, IMD and THM in vineyard soil was studied. Sorption kinetics studies were conducted over a period of 96 hours with sampling duration varying from 0, 2, 4, 8, 12, 24, 60 and 96 hours. All three neonicotinoids exhibited very low sorption potential for the soil investigated. Overall percent sorption for all three neonicotinoids was below 20.04 ± 2.03% with highest percent sorption being observed for IMD followed by DNT and THM. All three neonicotinoids are highly soluble with solubility increasing with IMD < THM < DNT. Although, DNT has the highest solubility among all three neonicotinoids investigated, it exhibited higher percent sorption compared to THM, indicating factors other than solubility influenced the sorption kinetics. Low sorption potential of neonicotinoids indicates greater leaching potential with regard to groundwater and surface water contamination.  相似文献   

7.
The sorption of lead by three soils that differed in texture and calcium carbonate content was studied at three different temperatures. Lead sorption was found to conform to both Freundlich and Langmuir isotherms. Soil adsorption maxima were derived from the reciprocal of the slope obtained by a least-squares fit of Langmuir plots for each soil. The highest adsorption capacity was exhibited by CaCO(3)-rich soil (773.55 mmol Pb kg(-1)). Raising the temperature from 298 K to 308 and 318 K increased the sorption capacity of all of the soils.  相似文献   

8.
Abstract

The sorption of imidacloprid (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐N‐nitro‐2‐imidazolid‐inimine) (IMI) and its metabolites imidacloprid‐urea (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐2‐imidazol‐idinone) (IU), imidacloprid‐guanidine (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐4,5‐dihydro‐lH‐imidazol‐2‐amine) (IG), and imida‐cloprid‐guanidine‐olefin ( 1 ‐[(6‐chloro‐3‐pyridinyl)methyl]‐lH‐imidazol‐2‐amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75–134) > IGO (2.87–72.3) > IMI (0.55 ‐16.9) > IU (0.31–9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2=0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non‐tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

9.
The sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolid-inimine ) (IMI) and its metabolites imidacloprid-urea (1-[(6-chloro-3-pyridinyl)-methyl]-2-imidazol-idinone) (IU), imidacloprid-guanidine (1-[(6-chloro-3-pyridinyl)-methyl]-4,5-dihydro-1H-imidazol-2-amine) (IG), and imidacloprid-guanidine-olefin (1-[(6-chloro-3-pyridinyl)methyl]-1H-imidazol-2-amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75-134) > or = IGO (2.87-72.3) > IMI (0.55-16.9) > IU (0.31-9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2 = 0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non-tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

10.
Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with KF values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [KF.(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.  相似文献   

11.
Gundi VA  Reddy BR 《Chemosphere》2006,62(3):396-403
The degradation of a widely used organophosphorus insecticide, monocrotophos (dimethyl (E)-1-methyl-2-methylcarbamoyl vinyl phosphate) in two Indian agricultural soils at two concentration levels, 10 and 100 microg g(-1) soil under aerobic conditions at 60% water-holding capacity at 28+/-4 degrees C was studied in a laboratory. The degradation of monocrotophos at both concentrations in black vertisol and red alfinsol soils was rapid accounting for 96-98% of the applied quantity and followed the first-order kinetics with rate constants (k) of 0.0753 and 0.0606 day(-1) and half-lives (t1/2) of 9.2 and 11.4 days, respectively. Degradation of monocrotophos in soils proceeded by hydrolysis with formation of N-methylacetoacetamide. Even three additions of monocrotophos at 10 microg g(-1) soil did not result in its enhanced degradation. However, there was cumulative accumulation of N-methylacetoacetamide in soils pretreated with monocrotophos to the tune of 7-15 microg g(-1) soil. Both biotic and abiotic factors were involved in degradation of monocrotophos in soils.  相似文献   

12.
Yazgan MS  Wilkins RM  Sykas C  Hoque E 《Chemosphere》2005,60(9):1325-1331
Predicting the fate and transport of pesticides in soil environment is an important issue especially in understanding and modelling of the environmental behaviour of pesticides. Classical batch sorption method often has been identified as insufficient to derive the actual extent of sorption. In this study, the batch equilibrium method was compared to the centrifugation method, which can permit measurement of sorption under more natural conditions. The results of the comparison of the batch with the centrifugation method for imidacloprid and carbofuran pesticides indicate that the batch method overestimates sorption in comparison to the centrifugation method. These results are in agreement with others, which use high soil:solution ratios with batch and those that used the centrifugation method.  相似文献   

13.
Quinoline sorption was measured on Na-saturated subsurface materials, a natural clay isolate, and montmorillonite, and was dominated by exchange of the quinolinium ion. In water/methanol and water/acetone mixtures, quinoline sorption on the subsoils and clays was lower than from water. In cosolvent, sorption followed the ionization fraction indicating the continued predominance of ion exchange. The reduction in quinoline sorption by cosolvent was similar for all the subsoils and clays indicating commonality in the surface-solute-solvent interaction. Conditional equilibrium constants (cKex) for quinoline exchange on the subsoils in water/methanol mixtures decreased log-linearly with mole percent cosolvent up to 20% methanol. This decrease closely followed the increase in quinoline solubility in the cosolvent mixtures. Acetone caused greater reduction in sorption than methanol, at comparable mole percent, in accordance with its lower dielectric constant and enhanced solvating power. A generalized thermodynamic approach based on the concept of transfer activity coefficients was developed to account for the cosolvent effect on cKex, and was successfully applied to the quinoline sorption data. The thermodynamic analysis suggested that enhanced solvation of the organic cation in the bulk solvent and desolvation of Na+ at the charged surface predominate the cosolvent effect.  相似文献   

14.
15.
Sequential sorption of lead and cadmium in three tropical soils   总被引:2,自引:0,他引:2  
It is important to examine mechanisms of Pb and Cd sorption in soils to understand their bioavailability. The ability of three tropical soils to retain Pb, Cd, and Ca was evaluated. The objectives of this study were to (1) determine the extent to which soil sorption sites are metal specific, (2) investigate the nature of reactions between metals and soil surfaces, and (3) identify how metals compete for sorption sites when they are introduced to soils sequentially or concurrently. Lead was shown to be much less exchangeable than Cd and inhibited Cd sorption. Cadmium had little effect on Pb sorption, though both Ca and Cd inhibited the adsorption of Pb at exchange sites. Lead appears to more readily undergo inner-sphere surface complexation with soil surface functional groups than either Cd or Ca. Thus, regardless of when Pb is introduced to a soil, it should be less labile than Cd.  相似文献   

16.
The horizons of four natural soils were treated with Cu2+ in an acid medium to study the retention capacity of Cu. The possible mineralogical changes arising because of the treatment were also studied. The soil properties and characteristics with the greatest influence on the metal retention and its distribution among the different soil fractions were determined. Crystalline phases of each horizon were determined by X-ray diffraction (XDR). The morphology, structural distribution and particle chemical composition of soil samples were investigated using field emission scanning electron microscopy. Cu distribution in the different geochemical phases of the soil was studied using a sequential extraction. The treatment led to an increase in the amorphous phases and the formation of new crystalline phases, such as rouaite (Cu2(NO3)(OH)3) and nitratine (NaNO3). Cu was also found superficially sorbed on amorphous hydroxy compounds of Fe that interact with albite, muscovite and gibbsite, and also on spherical and curved particles of aluminium clays. The largest amount of Cu retained was in an exchangeable form, and the smallest amount associated with the crystalline Fe oxides and residual fraction. In the surface horizons, the predominant Cu retention process is complexation in organomineral associations, while in the subsurface horizons it is adsorption.  相似文献   

17.
The sorption kinetics of simazine (6-chloro-N,N′-diethyl-1,3,5-triazine-2,4-diamine), imidacloprid (1-(6-chloro-3-pyridylmethyl)-N-nitroimidazolidin-2-ylideneamine), and boscalid (2-chloro-N-(4′-chlorobiphenyl-2-yl)nicotinamide), three pesticides of wide use in agriculture, was determined in five different water/soil systems over a time interval from the initial few seconds to about 1 month. In all the experiments, sorption kinetics showed a biphasic pattern characterized by an initial, relatively short phase with a high sorption rate and a later phase with much a lower sorption rate. Initial sorption capacity increased with soil organic carbon content and with sorbate hydrophobicity. We postulate that the first phase of the process involves a fast second-order sorption reaction on superficial sites of soil particles, whereas the second phase depends on diffusion-controlled migration to internal binding sites. A kinetic equation based on this hybrid model accurately fitted all data sets. Less satisfactory results were obtained employing the pseudo-first order, pseudo-second order, Elovich, two site non-equilibrium, or Weber-Morris equation. The superior performance of the hybrid model for describing boscalid sorption probably reflects the high hydrophobic character and consequent low diffusion rates of this compound. The accuracy of modelling was in any case strongly dependent on the time interval considered.  相似文献   

18.
Environmental Science and Pollution Research - This study investigated the influence of the sewage sludge (SS) soil amendment on the chronic toxicity of imidacloprid (through the seed dressing...  相似文献   

19.
This investigation was undertaken to determine the effect of amendment of two fly ashes [Kota and Inderprastha (IP)] on sorption behavior of metsulfuron-methyl in three Indian soil types. Kota fly ash (5%) did not show any effect on herbicide sorption while IP fly ash significantly enhanced the sorption. Further studies on metsulfuron-methyl sorption-desorption behavior in 0.5, 1, 2, and 5% IP fly ash-amended soils suggested that effect of fly ash varied with soil type and better effect was observed in low organic carbon content soils. The sorption-desorption isotherms fitted very well to the Freundlich sorption equation and, in general, slope (1/n) values less than unity were observed. Metsulfuron-methyl sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to the Freundlich sorption constant (K f), K FA values (sorption normalized to fly ash content) showed less variation. Metsulfuron-methyl leaching studies suggested greater retention of herbicide in the application zone in IP fly ash-amended soils, but effect varied with soil type and no herbicide leaching was observed in 5% fly ash-amended soils. The study suggested that all coal fly ashes are not effective in enhancing the sorption of metsulfuron-methyl in soils. However, one which enhanced herbicide sorption, could play an important role in reducing its leaching losses.  相似文献   

20.
Aging activity of DDE in dissimilar rice soils in a greenhouse experiment   总被引:2,自引:0,他引:2  
Yao FX  Yu GF  Wang F  Yang XL  Jiang X 《Chemosphere》2008,71(6):1188-1195
A green-house study was conducted in late 2005 to investigate the aging behavior of p,p'-DDE in two types of soil, Hydragric Anthrosols (An) and Hydragric Acrisols (Ac), according to the World Reference Base (WRB) [FAO/ISRIC/ISSS. 1998. World reference base for soil resources. World soil resources reports, Rome. p. 87]. Paddy rice and dry rice were grown in submerged paddy soils and non-submerged upland soils, respectively. The concentration of extractable p,p'-DDE in fresh DDE-spiked soils was 746.2ngg(-1). During the first few weeks of the experiment, the extractability of p,p'-DDE became increasingly low as the aging period prolonged. However, certain amount of p,p'-DDE that had been captured by soil minerals and organic matter (OM) could be released and became extractable in the later period. The extractability of p,p'-DDE in submerged soils was significantly lower than that in non-submerged soil, because flooding could increase the binding of pollutants to soil particles. The plantation of both dry rice and paddy rice slowed down the aging process of p,p'-DDE. After one month's growth of rice, p,p'-DDE bound to soil particles was released and became extractable. The OM and silt content of An are higher than that of Ac, resulting in more bound residues and relative lower extractability of p,p'-DDE in An. In addition, the extractability of p,p'-DDE could be reduced by the addition of rice straw to soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号