首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
林兰稳  钟继洪  谭军  梁广灶 《生态环境》2012,(10):1678-1682
为了解不同利用方式下土壤动物多样性状况及其演变,对广州市东部郊区的水稻田、蔬菜地、果园旱地和林地4种土地利用类型0~5、5~10、10~15、15~20cm土层进行了土壤动物取样调查,共获得土壤动物24683只,分别隶属于4门10纲23类。统计分析结果表明,土壤动物多样性受土地利用方式的影响明显。果园旱地和林地的个体数显著高于蔬菜地和水稻田,但果园旱地与林地、蔬菜地与水稻田之间无显著差异;果园旱地和林地的土壤动物类群数显著高于水稻田,但果园旱地与林地、林地与蔬菜地、蔬菜地与水稻田之间的差异不显著;林地和果园旱地的复杂性指数显著高于蔬菜地,但林地与果园旱地和水稻田、水稻田与蔬菜地之间的差异不显著(P〈O.05)。土壤动物的个体数和类群数量随着土壤深度的增加而明显减少,但不同土地利用方式下各层土壤动物的丰富度及其随土层加深而递减的程度则有明显不同,其中,林地和果园旱地的土壤动物在不同土层中较丰富,垂直变化比较和缓,水稻田和蔬菜地的类群数和个体数则随土层的加深而急剧减少。  相似文献   

2.
不同利用方式下吴江市耕地土壤环境质量变化   总被引:7,自引:1,他引:7  
土地利用方式的不同影响着土壤环境质量的变化。文章采用了2003年江苏省吴江市耕地质量监测中资料,分析了6种不同土地利用方式下的土壤养分及Pb、Cr、Hg、As、Cd等5种重金属元素全量的变化,并采用土壤质量综合指数(SQI)法计算不同利用下的土壤环境质量指数。结果表明:近20多年来,吴江市土地利用方式发生了明显的变化,这种变化对本土壤养分和重金属含量产生了十分明显的影响。在稻田、林地、桑园、菜地、果园、旱地六种吴江常见的土地利用方式中,稻田土壤环境质量综合指数显著高于其他利用下,而其他五种利用方式下土壤质量的差别不明显。可见稻田不仅是一种太湖地区传统的利用方式,更是保持环境质量相对最佳的土地利用方式。  相似文献   

3.
不同利用方式下黄壤旱坡地磷素状况及环境影响分析   总被引:1,自引:0,他引:1  
通过对贵州黄壤进行采样以及采用无界径流小区法收集地表径流,探索不同利用方式下黄壤旱坡地磷素水平及其地表径流磷浓度的差异。结果表明,不同利用方式下黄壤旱坡地中全磷和有效磷(Olsen-P)含量的大小顺序为连作烟地>烤烟-玉米轮作地>连作玉米地>林地;CaCl_2浸提磷(土壤易解吸磷)和Na0H浸提磷(藻类可利用的土壤总磷)与土壤全磷和有效磷有显著的相关性;土壤富磷化的同时,其磷素的流失风险明显地提高。连作烟地地表径流总磷(TP)和磷酸根态磷(Ortho-P)浓度明显大于连作玉米地.而林地地表径流TP浓度明显小于旱地;黄壤旱坡地地表径流中TP和Ortho-P与土壤有效磷之间存在极显著的相关性(r为0.957、0.875),因而连作烟地磷素的环境影响潜能明显高于其它旱地以及林地。  相似文献   

4.
LUCC及气候变化对龙川江流域径流的影响   总被引:1,自引:0,他引:1  
土地利用与土地覆被变化(Land Use and Land Cover Change,LUCC)及气候变化对流域的径流变化影响巨大。为揭示龙川江流域LUCC和气候变化对径流变化的影响,基于SWAT模型,通过设置不同情景,定量分析了不同土地利用类型和气候要素对流域内径流的影响,并结合RCP4.5、RCP8.5两种气候情景对流域未来径流的变化进行了预估。结果显示,(1)SWAT模型在龙川江流域径流模拟中具有较好的适用性,可用SWAT模型进行流域的径流模拟,率定期的模型参数R~2、Ens分别达到0.73、0.71,验证期的模型参数R~2、Ens分别达到0.75、0.74。(2)从土地利用方面考虑,将农业用地转化为林地或草地,均会导致流域径流量的减少,而将林地转化为草地则会引起流域径流量的增加,农业用地、林地、草地三者对径流增加的贡献大小顺序为农业用地?草地?林地。从气候变化方面考虑,流域径流量与降雨量呈正比,与蒸发量呈反比。(3)2006-2015年间龙川江流域LUCC引起的月均径流增加幅度小于气候变化引起的月均径流减少幅度,龙川江径流的变化由气候变化主导,月均径流量总体上减少1.59 m~3·s~(-1)。(4)预估结果显示,RCP4.5和RCP8.5气候情景下,2021-2050年间龙川江流域径流减少趋势明显,分别为1971-2015年减速的2.65倍、3.43倍。  相似文献   

5.
选取广州市流溪河流域典型农业集水区--新田小流域为研究对象,对研究区降雨地表径流进行定点监测,探讨降雨-径流条件下农业非点源污染物的动态变化规律和不同利用类型的地表景观对非点源污染的贡献情况.结果表明:在降雨事件下,污染物输出浓度总体上高于日常非降雨条件的污染物浓度,T-N、T-P和CODCr的平均输出浓度分别是非降雨条件下的3.8倍、7.8倍和32.1倍;整个降雨-径流过程中,降雨初期是非点源污染物流失的高峰期,污染物浓度变化总体趋势滞后于降雨强度的变化,但与径流量变化趋势总体上相似;从不同地表景观径流产污来看,经生活区的径流CODCr输出浓度显著上升,水田田面径流是引起水体环境N、P污染的主要原因.  相似文献   

6.
于甘肃省安家沟流域选择设计15个径流小区,通过对径流小区1986-1999年的水文监测资料进行年尺度上的方差分析、多重比较和相关分析,研究不同土地利用类型对坡地产流、产沙的影响,同时分析年降雨量与坡地单位面积年产流、产沙量的相关关系.结果表明,相同坡度等级下5种土地利用类型坡地的单位面积年产流量之间及单位面积年产沙量之间都存在显著差异,大小顺序均表现为:坡耕地>人工草地>乔木林地>自然草地>灌木林地;在研究的坡度(10°~20°)范围内,同一土地利用类型、不同坡度径流小区的单位面积年产流量差异不显著,坡耕地和人工草地的单位面积年产沙量差异显著;年降雨量分别与坡地单位面积年产流量、产沙量无显著相关性.  相似文献   

7.
岷江流域不同土地利用方式下紫色土有机碳储量特征   总被引:2,自引:0,他引:2  
以岷江中下游流域紫色土为研究对象,按流域分上中下游区段3个抽样层采样,研究不同土地利用方式下紫色土有机碳储量特征,为紫色土退化评估及地力维护提供参考.结果显示,紫色土有机碳总量以林地(14.151g/kg)显著高于果园地(9.458g/kg)、菜园地(8.542g/kg)、草坡地(7.875g/kg),以玉米地(6.226g/kg)最低.水溶性有机碳含量呈现林地>果园地>菜园地>草坡地>玉米地趋势.同时,流域上、中、下游紫色土有机碳总量总体上差异显著,且以上游区段紫色土有机碳总量最高.流域中下游紫色土有机碳总量变化较大,其中,林地以下游高于中游,果园及草坡地以中游高于下游.菜园地、玉米地在3个区段上差异未达显著水平.岷江流域紫色土有机碳储量总体特征表现上游最高,中下游变化复杂,下游略高于中游区域.图1表4参10  相似文献   

8.
利用深圳市王家庄集水区的降雨径流水质监测数据,运用正定矩阵因子分解法(PMF)定量解析了单个城市小集水区降雨径流污染的主要来源。结果表明:研究区降雨径流的主要污染源为城市污水、管内沉积物和地表径流。其中城市污水以输出氨氮(NH3-N)和总氮(TN)为主,管内沉积物是化学需氧量(CODCr)、总磷(TP)和生化需氧量(BOD5)的主要来源,地表径流为固体悬浮物(SS)的主要来源。PMF模型可作为土地利用方式均一的单个城市小集水区降雨径流污染源解析的有效方法之一,主要污染源的廓线能否保持相对稳定是该模型在降雨径流污染源解析时的主要约束条件。  相似文献   

9.
以巢湖典型低丘山区坡地的6种主要土地利用类型(弃耕地、尾矿裸地、灌木林地、荒草地、马尾松林地和人工恢复林地)为研究对象,通过定位观测与收集坡面壤中流,探讨该地区壤中流养分流失动态变化特征。结果表明,巢湖低丘山区典型土地利用类型壤中流发生概率为灌木林地和荒草地较高,尾矿裸地最低(仅在0~20cm土层产生);表层壤中流氮含量为尾矿裸地最高,人工恢复林地最低,壤中流磷含量为弃耕地最高,尾矿裸地最低;壤中流氮素流失以溶解态NO3-N为主,并随雨季的到来而呈下降趋势,随土层加深呈先下降后升高趋势;磷主要以有机溶解态形式流失,随土层加深而呈下降趋势。相关分析表明,地表总盖度、地表植被均匀度、土壤养分含量与壤中流氮、磷含量间存在显著相关性,而降雨特征(降雨量、降雨强度)与壤中流氮、磷含量问相关性不显著。由于人为开采严重,在分析该地区壤中流氮素含量时,应注意干湿沉降的影响。  相似文献   

10.
白盆珠水库库区坡面径流侵蚀规律初步研究   总被引:1,自引:0,他引:1  
在对白盆珠水库库区开展水土流失实地调查的基础上,选择库区典型的侵蚀地貌类型与植被类型进行降雨-径流-产沙规律的初步研究.通过6个径流小区试验对比,分析了在不同植被条件下产流、产沙的差异,结果表明缺乏地表草本植被的纯飞播造林的水土保持效益十分有限;库区降雨径流产沙是白盆珠水库淤积的重要来源.  相似文献   

11.
A bioblitz inexpensively and quickly generates biodiversity data, but bioblitzes are often conducted with haphazard, unreplicated sampling. Results tend to be taxonomically, geographically, or temporally biased, lack metadata, and consist of lists of observed taxa that do not enable further analyses or correction for imperfect detection. A rapid, recurring, structured survey (RRSS) uses a structured sampling design and temporal and spatial replication to survey randomly selected sites on a conservation property. We participated in a loosely structured bioblitz and a subsequent RRSS at Big Canoe Creek Nature Preserve in Springville (St. Clair County), Alabama (USA) to compare observed richness derived from the 2 survey approaches. The RRSS data structure enabled us to fit models that accounted for imperfect detection to estimate abundances, occupancy probabilities, and habitat associations. The loosely structured bioblitz data could not be used in such models. We present a new integrated multispecies abundance model that we applied to avian RRSS data. Our model extension enables estimation for the community, employs data augmentation to estimate the number of undetected species, and incorporates covariates. The RRSS generated a more comprehensive and less biased list of observed taxonomic richness than the loosely structured bioblitz (e.g., 73 vs. 45 bird species and 104 vs. 63 insect families from the RRSS vs. loosely structured bioblitz, respectively). Models fit to the RRSS data identified seasonal patterns in avian community composition and allowed for estimation of habitat–occupancy relationships for insect taxa. The RRSS protocol has potential for broad transferability as a standardized, quick, and inexpensive way to inventory biodiversity and estimate ecological parameters while providing an outreach opportunity.  相似文献   

12.
Land-use change via human development is a major driver of biodiversity loss. To reduce these impacts, billions of dollars are spent on biodiversity offsets. However, studies evaluating offset project effectiveness that examine components such as the overall compliance and function of projects remain rare. We reviewed 577 offsetting projects in freshwater ecosystems that included the metrics project size, type of aquatic system (e.g., wetland and creek), offsetting measure (e.g., enhancement, restoration, and creation), and an assessment of the projects’ compliance and functional success. Project information was obtained from scientific and government databases and gray literature. Despite considerable investment in offsetting projects, crucial problems persisted. Although compliance and function were related to each other, a high level of compliance did not guarantee a high degree of function. However, large projects relative to area had better function than small projects. Function improved when projects targeted productivity or specific ecosystem features and when multiple complementary management targets were in place. Restorative measures were more likely to achieve targets than creating entirely new ecosystems. Altogether the relationships we found highlight specific ecological processes that may help improve offsetting outcomes.  相似文献   

13.
An argument is presented in which areas of natural arsenic contamination of modern groundwaters throughout Asia have a common origin. Arsenic originally accumulated in oceanic ferro-manganoan sediments of the eastern Palaeo-Tethys. This was further concentrated through oceanic crustal extinction in what later became the south-east Chinese accreted mineralised terrain. Proto-Himalayan uplift of this area created the palaeo-drainage systems of the Ganges – Brahmaputra, Irrawaddy, Mekong, and Red Rivers, with consequent headwater erosion of arsenic-rich sediments. Their downstream deposition as immature and easily redistributed Neogene sandstones, silts, and iron-rich clays has created secondary and tertiary reservoirs of adsorbed and authigenic arsenic, from which the current arsenic-rich groundwaters have evolved. Considering river basins within the above palaeo-hydrogeological framework provides a basis for assessing the risk of arsenic in groundwater basins of south and south-eastern Asia.  相似文献   

14.
How should managers choose among conservation options when resources are scarce and there is uncertainty regarding the effectiveness of actions? Well‐developed tools exist for prioritizing areas for one‐time and binary actions (e.g., protect vs. not protect), but methods for prioritizing incremental or ongoing actions (such as habitat creation and maintenance) remain uncommon. We devised an approach that combines metapopulation viability and cost‐effectiveness analyses to select among alternative conservation actions while accounting for uncertainty. In our study, cost‐effectiveness is the ratio between the benefit of an action and its economic cost, where benefit is the change in metapopulation viability. We applied the approach to the case of the endangered growling grass frog (Litoria raniformis), which is threatened by urban development. We extended a Bayesian model to predict metapopulation viability under 9 urbanization and management scenarios and incorporated the full probability distribution of possible outcomes for each scenario into the cost‐effectiveness analysis. This allowed us to discern between cost‐effective alternatives that were robust to uncertainty and those with a relatively high risk of failure. We found a relatively high risk of extinction following urbanization if the only action was reservation of core habitat; habitat creation actions performed better than enhancement actions; and cost‐effectiveness ranking changed depending on the consideration of uncertainty. Our results suggest that creation and maintenance of wetlands dedicated to L. raniformis is the only cost‐effective action likely to result in a sufficiently low risk of extinction. To our knowledge we are the first study to use Bayesian metapopulation viability analysis to explicitly incorporate parametric and demographic uncertainty into a cost‐effective evaluation of conservation actions. The approach offers guidance to decision makers aiming to achieve cost‐effective conservation under uncertainty.  相似文献   

15.
Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza‐Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land‐use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon‐dense (domed pole forest) areas. New carbon‐based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.  相似文献   

16.
17.
Parasitic wasps orient to green leaf volatiles   总被引:12,自引:0,他引:12  
Summary Undamaged plants emit low levels of green leaf volatiles (GLVs), while caterpillar-damaged and artificially damaged plants emit relatively higher levels of certain GLVs. Female braconid parasitoids,Microplitis croceipes, oriented to both damaged plants and to individual GLVs in no-choice tests in a wind tunnel, but seldom oriented to undamaged plants. Female ichneumonid parasitoids,Netelia heroica, also oriented to individual GLVs in a wind tunnel. Males of both wasp species failed to orient to the GLVs. These data show that leaf-feeding caterpillars can cause the release of GLVs, and that parasitic wasps can respond to these odors by flying upwind (chemoanemotactic response), which brings the wasps to their caterpillar hosts. This supports the hypothesis that plants communicate with members of the third trophic level,i.e., plants under herbivore attack emit chemical signals that guide natural enemies of herbivores to sites of plant damage. In this interaction, the GLVs serve as tritrophic plant-to-parasitoid synomones. That parasitoids from two different wasp families oriented to GLVs suggests that the response may be widespread among the Hymenoptera.Mention of a commercial or proprietary product does not constitute an endorsement by the U.S. Department of Agriculture  相似文献   

18.
Biogeographic theory predicts that rare species occur more often in larger, less‐isolated habitat patches and suggests that patch size and connectivity are positive predictors of patch quality for conservation. However, in areas substantially modified by humans, rare species may be relegated to the most isolated patches. We used data from plant surveys of 81 meadow patches in the Georgia Basin of Canada and the United States to show that presence of threatened and endangered plants was positively predicted for patches that were isolated on small islands surrounded by ocean and for patches that were isolated by surrounding forest. Neither patch size nor connectivity were positive predictors of rare species occurrence. Thus, in our study area, human influence, presumably due to disturbance or introduction of competitive non‐native species, appears to have overwhelmed classical predictors of rare species distribution, such that greater patch isolation appeared to favor presence of rare species. We suggest conservation planners consider the potential advantages of protecting geographically isolated patches in human‐modified landscapes because such patches may represent the only habitats in which rare species are likely to persist. Influencia Humana y Predictores Biogeográficos Clásicos de la Ocurrencia de Especies Raras  相似文献   

19.
The macro-algae communities observed in the south lake of Tunis are characterized by the predominance of nitrophilous algae which are in the order of biomass importance:Ulva, Cladophora andEnteromorpha. We have noted seasonal changes of alga distribution. The wind appears to be one of the most important factors influencing this distribution. The total biomass reaches a maximum in the spring. Rapid decomposition of the biomass leads to a severe ecological imbalance, resulting in crises of anoxia and fish death. A restoration project has already started. It aims at removal of contaminated muds and the introduction of a new circulation system. The main objectives of this work were to collect information on the distribution and biomass of the phytobenthic communities as a first step in the constitution of a database for further comparison.  相似文献   

20.
International Union for Conservation of Nature (IUCN) Red List assessments rely on published data and expert inputs, and biases can be introduced where underlying definitions and concepts are ambiguous. Consideration of climate change threat is no exception, and recently numerous approaches to assessing the threat of climate change to species have been developed. We explored IUCN Red List assessments of amphibians and birds to determine whether species listed as threatened by climate change display distinct patterns in terms of habitat occupied and additional nonclimatic threats faced. We compared IUCN Red List data with a published data set of species’ biological and ecological traits believed to infer high vulnerability to climate change and determined whether distributions of climate change‐threatened species on the IUCN Red List concur with those of climate change‐threatened species identified with the trait‐based approach and whether species possessing these traits are more likely to have climate change listed as a threat on the IUCN Red List. Species in some ecosystems (e.g., grassland, shrubland) and subject to particular threats (e.g., invasive species) were more likely to have climate change as a listed threat. Geographical patterns of climate change‐threatened amphibians and birds on the IUCN Red List were incongruent with patterns of global species richness and patterns identified using trait‐based approaches. Certain traits were linked to increases or decreases in the likelihood of a species being threatened by climate change. Broad temperature tolerance of a species was consistently related to an increased likelihood of climate change threat, indicating counterintuitive relationships in IUCN assessments. To improve the robustness of species assessments of the vulnerability or extinction risk associated with climate change, we suggest IUCN adopt a more cohesive approach whereby specific traits highlighted by our results are considered in Red List assessments. To achieve this and to strengthen the climate change‐vulnerability assessments approach, it is necessary to identify and implement logical avenues for further research into traits that make species vulnerable to climate change (including population‐level threats).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号