首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Concentrations of elemental carbon (EC) and organic carbon (OC) in particles at Seoul and Cheju Island, Korea were observed in 1994. PM10 and PM2.5 were collected by a modified SCAQS (Southern California Air Quality Study) sampler from Seoul during June 1994 and PM2.5 were collected by a low-volume sampler at Cheju Island during July and August 1994. The selective thermal oxidation method with MnO2 catalyst was used for analysis. The EC concentrations from Seoul were higher than those at Los Angeles, USA during the SCAQS study while the OC concentrations were comparable to those during the SCAQS study. At Cheju Island, the OC concentrations were higher than those at other clean areas in the world but the EC concentrations were lower than or comparable to those at other clean areas in the world. The OC to EC ratios of Seoul suggest that the carbonaceous species are mostly from primary emission sources. In Cheju, during July 1994 air pollutant levels were high and it was suggested that atmospheric transformation/transport of organics and biogenic emissions were main sources of carbonaceous species in particles. The carbonaceous species levels were low during August 1994 and it was suggested that the levels could be considered as marine background concentrations in the region during summer.  相似文献   

2.
The concentrations of dimethylsulfide (DMS) in air and its oxidation products in aerosols were measured from the coastal atmospheres of Cheju Island, Korea, during three exploratory field experiments conducted over September 1997 through April 1998. According to our measurements, there were large fluctuations in the distribution of DMS and relevant species in the coastal atmospheres; the magnitude of variations was significant both within each measurement period and across different measurement periods. The mean mixing ratios of atmospheric DMS from the whole data sets were found within the range of 19 to 1140 pptv (n=84) with the grand mean value of 100 pptv. Like DMS, large variations in the data distribution were consistently seen from other species investigated concurrently. The concentrations of aerosol ions including non-seasalt sulfate (NSSS), seasalt sulfate (SSS), and methane sulfonate (MSA) spanned over two orders of magnitude such as 0.24-88 (mean 32), 0.08-17.2 (mean 3.70), and 0.01-0.78 (mean 0.16) nmol m(-3), respectively. The molar ratios of those ions were measured as: (1) NSSS/SSS in 1.26-95 (mean 44); (2) MSA/NSSS in 0.0002-0.063 (mean 0.009); and (3) NSSS/NO(3) in 0.21-9.5 (mean 2.35). Examinations of our measurement data indicated that the concentrations of DMS and relevant ions varied significantly across day/night periods and across different seasons. It was also seen that there are strong differences in seasonal distribution patterns between fall, winter, and spring. Detailed analysis of the data sets revealed that changes in their distribution patterns were in strong compliance with changes in meteorological conditions. Especially, large fluctuations in magnitudes and amplitudes of springtime DMS concentrations were coinciding with the intrusion of southeasterly winds, suggesting the possibility that the DMS-rich air masses were brought into the study area from the productive waters of the southeast coastal area of Cheju. Similarly to the case of DMS, the occurrence of unusual wind patterns during spring contributed to changes in the content and composition of aerosol ions. Although the introduction of southeasterly winds during spring helped maintain high DMS and MSA levels, the concentrations of aerosol ions dropped significantly because of depositional loss during the passage of air mass over land area. According to the procedures of Wylie and De Mora, we reached the conclusion that the magnitude of annual DMS emissions in the western Korean sea were in the range of 5 to 18 Gg S.  相似文献   

3.
Determination of the chemical compositions of atmospheric single particles in the Yellow Sea region is critical for evaluating the environmental impact caused by air pollutants emitted from mainland China and the Korean peninsula. After ambient aerosol particles were collected by the Dekati PM10 cascade impactor on July 17–23, 2007 at Tokchok Island (approximately 50 km west of the Korean coast nearby Seoul), Korea, overall 2000 particles (on stage 2 and 3 with cut-off diameters of 2.5–10 μm and 1.0–2.5 μm, respectively) in 10 samples were determined by using low-Z particle electron probe X-ray microanalysis. X-ray spectral and secondary electron image (SEI) data showed that soil-derived and sea-salt particles which had reacted or were mixed with SO2 and NOx (or their acidic products) outnumbered the primary and “genuine” ones (59.2% vs. 19.2% in the stage 2 fraction and 41.3% vs. 9.9% in the stage 3 fraction). Moreover, particles containing nitrate in the secondary soil-derived species greatly outnumbered those containing sulfate. Organic particles, mainly consisting of marine biogenic species, were more abundant in the stage 2 fraction than in the stage 3 fraction (11.6% vs. 5.1%). Their relative abundance was greater than the sum of carbon-rich, K-containing, Fe-containing, and fly ash particles, which exhibited low frequencies in all the samples. In addition, many droplets rich in C, N, O, and S were observed. They tended to be small, exhibiting a dark round shape on SEI, and generally included 8–20 at.% C, 0–12 at.% N, 60–80 at.% O, and 4–10 at.% S (sometimes with <3 at.% Mg and Na). They were attributed to be a mixture of carbonaceous matter, H2SO4, and NH4HSO4/(NH4)2SO4, mostly from the reaction of atmospheric SO2 with NH3 under high relative humidity. The analysis of the relationship between the aerosol particle compositions and 72-h backward air-mass trajectories suggests that ambient aerosols at Tokchok Island are strongly affected not only by seawater from the Yellow Sea but also by anthropogenic pollutants emitted from China and the Seoul–Incheon metropolis, resulting in the dominance of complex secondary aerosol particles.  相似文献   

4.
To better understand the current physical and chemical properties of East Asian aerosols, an intensive observation of atmospheric particles was conducted at Gosan site, Jeju Island, South Korea during 2005 spring. Total suspended particle (TSP) samples were collected using pre-combusted quartz filters and a high-volume air sampler with the time intervals ranging from 3 h to 48 h. The kinds and amount of various organic compounds were measured in the samples using gas chromatography–mass spectrometry. Among the 99 target compounds detected, saccharides (average, 130 ± 14 ng m?3), fatty acids (73 ± 7 ng m?3), alcohols (41 ± 4 ng m?3), n-alkanes (32 ± 3 ng m?3), and phthalates (21 ± 2 ng m?3) were found to be major compound classes with polyols/polyacids, lignin and resin products, PAHs, sterols and aromatic acids being minor. Compared to the previous results reported for 2001 late spring samples, no significant changes were found in the levels of their concentrations and compositions for 4 years, although the economy in East Asia, especially in China, has sharply expanded from 2001 to 2005. During the campaign at Gosan site, we encountered two distinct dust storm episodes with high TSP concentrations. The first dust event occurred on March 28, which was characterized by a predominance of secondary organic aerosols. The second event that occurred on the next day (March 29) was found to be characterized by primary organic aerosols associated with forest fires in Siberia/northeastern China. A significant variation in the molecular compositions, which was found within a day, suggests that the compositions of East Asian aerosols are heterogeneous due to multi-contributions from different source regions together with different pathways of long-range atmospheric transport of particles.  相似文献   

5.
6.
Observations of particle size distributions suggest that particles grow significantly just above the snow surface at a remote, Arctic site. Measurements were made at Summit, Greenland (71.38°N and 31.98°W) at approximately 3200 m above sea level. No new particle formation was observed locally, but growth of ultrafine particles was identified by continuous evolution of the geometric mean diameter (GMD) during four events. The duration of the growth during events was between 24 and 115 h, and calculated event-average growth rates (GR) were 0.09, 0.30, 0.27, and 0.18 nm h?1 during each event, respectively. Four-hour GR up to 0.96 nm h?1 were observed. Events occurred during below- and above-average temperatures and were independent of wind direction. Correlation analysis of hourly-calculated GR suggested that particle growth was limited by the availability of photochemically produced precursor gases. Sulfuric acid played a very minor role in particle growth, which was likely dominated by condensation of organic compounds, the source of which was presumably the snow surface. The role of boundary layer dynamics is not definite, although some mixing at the surface is necessary for the observation of particle growth. Due to the potentially large geographic extent of events, observations described here may provide a link between long-range transport of mid-latitude pollutants and climate regulation in the remote Arctic.  相似文献   

7.
In order to better understand the characteristics of atmospheric carbonaceous aerosol at a background site in Northeast Asia, semicontinuous organic carbon (OC) and elemental carbon (EC), and time-resolved water-soluble organic carbon (WSOC) were measured by a Sunset OC/ EC and a PILS-TOC (particle-into-liquid sampler coupled with an online total organic carbon) analyzer, respectively, at the Gosan supersite on Jeju Island, Korea, in the summer (May 28-June 17) and fall (August 24-September 30) of 2009. Hourly average OC concentration varied in the range of approximately 0.87-28.38 microgC m-3, with a mean of 4.07+/- 2.60 microgC m-3, while the hourly average EC concentration ranged approximately from 0.04 to 8.19 .microgC m-3, with a mean of 1.35 +/- 0.71 microgC m-3, from May 28 to June 17, 2009. During the fall season, OC varied in the approximate range 0.9-9.6 microgC m-3, with a mean of 2.30 +/-0.80 microgC m-3, whereas EC ranged approximately from 0.01 to 5.40 microgC m-3, with a mean of 0.66 +/- 0.38 microgC m-3. Average contributions of EC to TC and WSOC to OC were 26.0% +/- 9.7% and 20.6% +/-7.4%, and 37.6% +/- 23.5% and 57.2% +/- 22.2% during summer and fall seasons, respectively. As expected, clear diurnal variation of WSOC/OC was found in summer, varying from 0.22 during the nighttime up to 0.72 during the daytime, mainly due to the photo-oxidation process. In order to investigate the effect of air mass pathway on the characteristics of carbonaceous aerosol, 5-day back-trajectory analysis was conducted using the HYSPLIT model. The air mass pathways were classified into four types: Continental (CC), Marine (M), East Sea (ES) and Korean Peninsula (KP). The highest OC/EC ratio of 3.63 was observed when air mass originated from the Continental area (CC). The lowest OC/EC ratio of 0.79 was measured when air mass originated from the Marine area (M). A high OC concentration was occasionally observed at Gosan due to local biomass burning activities. The contribution of secondary OC to total OC varied approximately between 8.4% and 32.2% and depended on air mass type.  相似文献   

8.
Totally nine measurement campaigns for ambient particles and SO2 have been conducted during the period of 1997–2000 in Qingdao in order to understand the characteristics of the particulate matter in coastal areas of China. The mass fractions of PM2.5, PM2.5−10 and PM>10 in TSP are 49%, 25% and 26%, respectively. The size distribution of particles mass concentrations in Qingdao shows bi-modal distribution. Mass fraction percentages of water-soluble ions in PM2.5, PM2.5−10 and PM>10 decreased from 62% to 35% and 21%. In fine particles, sulfate, nitrate and ammonium, secondary formed compounds, are major components, totally accounting for 50% of PM2.5 mass concentration.The ratios of sulfate, chloride, ammonium and potassium in PM2.5 for heating versus non-heating periods are 1.34, 1.80, 1.56 and 1.44, respectively. The ratio of nitrate is 3.02 and this high ratio could be caused by reduced volatilization at lower temperature. Sulfate concentrations are higher than nitrate in PM2.5. The chemical forms of sulfate and nitrate are probably (NH4)2SO4 and NH4NO3 and chloride depletion was observed.Backward trajectory analysis reflected possible influence of air pollutant transport to Qingdao local aerosol pollution.  相似文献   

9.
Environmental Science and Pollution Research - In Jeju Island, multiple land-based aquafarms were fully operational along most coastal region. However, the effect of effluent on distribution and...  相似文献   

10.
Animal feeding operations (AFOs) produce particulate matter (PM) and gaseous pollutants. Investigation of the chemical composition of PM2.5 inside and in the local vicinity of AFOs can help to understand the impact of the AFO emissions on ambient secondary PM formation. This study was conducted on a commercial egg production farm in North Carolina. Samples of PM2.5 were collected from five stations, with one located in an egg production house and the other four located in the vicinity of the farm along four wind directions. The major ions of NH4+, Na+, K+, SO42?, Cl?, and NO3? were analyzed using ion chromatography (IC). In the house, the mostly abundant ions were SO42?, Cl?, and K+. At ambient stations, SO42?, and NH4+ were the two most abundant ions. In the house, NH4+, SO42?, and NO3? accounted for only 10% of the PM2.5 mass; at ambient locations, NH4+, SO42?, and NO3? accounted for 36–41% of the PM2.5 mass. In the house, NH4+ had small seasonal variations indicating that gas-phase NH3 was not the only major force driving its gas–particle partitioning. At the ambient stations, NH4+ had the highest concentrations in summer. In the house, K+, Na+, and Cl? were highly correlated with each other. In ambient locations, SO42? and NH4+ had a strong correlation, whereas in the house, SO42? and NH4+ had a very weak correlation. Ambient temperature and solar radiation were positively correlated with NH4+ and SO42?. This study suggests that secondary PM formation inside the animal house was not an important source of PM2.5. In the vicinity, NH3 emissions had greater impact on PM2.5 formation.
ImplicationsThe chemical composition of PM2.5 inside and in the local vicinity of AFOs showed the impact of the AFO emissions on ambient secondary PM2.5 formation, and the fate and transport of air pollutants associated with AFOs. The results may help to manage in-house animal facility air quality, and to develop regional air quality control strategies and policies, especially in animal agriculture-concentrated areas.  相似文献   

11.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

12.
13.
Seasonal variations of aerosol optical properties in Seoul (polluted urban site) and Gosan (coastal background site), Korea, with an emphasis on the relative humidity were investigated using ground-based aerosol measurements and optical model calculations. The mass fraction of elemental carbon was 9–20%, but the optical contribution of these particles to light extinction was higher, up to 33–55% in Seoul. In Gosan, the contribution of non-sea-salt water-soluble aerosols on extinction was 81–93% due to the high mass fraction of these particles. Based on daily MODIS datasets, our analysis showed that the aerosol optical depths at Seoul and Gosan were highest in spring due to the influence of dust particles. The aerosol water content at Gosan, calculated using a thermodynamic equilibrium model, was higher than that at Seoul; this was attributed to the high relative humidity and high fraction of water-soluble aerosols at Gosan. At Seoul, despite abundant water vapors in summer, the possibility of hygroscopic growth of water-soluble aerosols was not more significant than that at Gosan.  相似文献   

14.
Elemental data for aerosol at Narragansett, RI, USA, were used to compare the source-identification power of positive matrix factorization (PMF), a new variant of factor analysis, with that of conventional factor analysis (CFA) and to investigate how much each technique can be “tuned” for best results. The techniques generally yielded similar results. Although both were degraded by weak elements and gave factors that always differed somewhat from known sources, they nonetheless provided substantial insight into sources of elements. PMF was harder to use than CFA but resolved crustal and marine components up to an order of magnitude better. Best results were generally obtained when the data were log-transformed, when missing data were replaced by means, and when various numbers of factors were tried and their results carefully evaluated for physical reasonableness. But the most important consideration was found to be the choice of elements, which outweighed all differences between techniques. Therefore, to maximize the source-identification power of factor analysis, the two most important steps appear to be selecting the optimum set of elements and selecting the basic technique, in that order.  相似文献   

15.
The authors analyze the sensitivities of source regions in East Asia to PM2.5 (particulate matter with an aerodynamic diameter of ≤2.5 µm) concentration at Fukue Island located in the western part of Japan by using a regional chemical transport model with emission sensitivity simulations for the year 2010. The temporal variations in PM2.5 concentration are generally reproduced, but the absolute concentration is underestimated by the model. Chemical composition of PM2.5 in the model is compared with filter sampling data in spring; simulated sulfate, ammonium, and elemental carbon are consistent with observations, but mass concentration of particulate organic matters is underestimated. The relative contribution from each source region shows the seasonal variation, especially in summer. The contribution from central north China (105°E–124°E, 34°N–42°N) accounts for 50–60% of PM2.5 at Fukue Island except in summer; it significantly decreases in summer (18%). Central south China (105°E–123°E, 26°N–34°N) has the relative contribution of 15–30%. The contribution from the Korean Peninsula is estimated at about 10% except in summer. The domestic contribution accounts for about 7% in spring and autumn and increases to 19% in summer. We also estimate the relative contribution to daily average concentration in high PM2.5 days (>35 μg m?3). Central north China has a significant contribution of 60–70% except in summer. The relative contribution from central south China is estimated at 46% in summer and about 30% in the other seasons. The contributions from central north and south China on high PM2.5 days are generally larger than those of their seasonal mean contributions. The domestic contribution is smaller than the seasonal mean value in every season; it is less than 10% even in summer. These model results suggest that foreign anthropogenic sources have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island.
Implications: The contribution from several source regions in East Asia to PM2.5 concentration at Fukue Island, a remote island located in the western part of Japan and close to the Asian continent, is estimated using a three-dimensional chemical transport model. The model results suggest that PM2.5 that is attributed to foreign anthropogenic sources have a larger contribution than that of domestic pollution and have a substantial impact on attainment of the atmospheric environmental standard of Japan at Fukue Island.  相似文献   

16.
The first measurements of peroxy (HO2+RO2) and hydroxyl (OH) radicals above the arctic snowpack were collected during the summer 2003 campaign at Summit, Greenland. The median measured number densities for peroxy and hydroxyl radicals were 2.2×108 mol cm−3 and 6.4×106 mol cm−3, respectively. The observed peroxy radical values are in excellent agreement (R2=0.83, M/O=1.06) with highly constrained model predictions. However, calculated hydroxyl number densities are consistently more than a factor of 2 lower than the observed values. These results indicate that our current understanding of radical sources and sinks is in accord with our observations in this environment but that there may be a mechanism that is perturbing the (HO2+RO2)/OH ratio. This observed ratio was also found to depend on meteorological conditions especially during periods of high winds accompanied by blowing snow. Backward transport model simulations indicate that these periods of high winds were characterized by rapid transport (1–2 days) of marine boundary layer air to Summit. These data suggest that the boundary layer photochemistry at Summit may be periodically impacted by halogens.  相似文献   

17.
The growth of 1-year-old aspen was simulated using TREGRO, a computer simulation model of individual tree growth, to assess potential effects of ozone (O3). TREGRO was parameterized using information from a field experiment conducted at Ithaca, NY, USA; the model was then applied using environmental information from Suwon, Korea, where O3 exposures of aspen had not been conducted. In the parameterization at Ithaca, the simulated and measured total biomass differed by about 3% and the differences between measured and simulated biomass gain of leaf, shoot, and root were 15.4, 8.3, and 4.4%, respectively. Simulating growth at Suwon required adjustment in growth rates to match measured growth due to the different weather conditions at the two cities. The assimilated carbon was evenly distributed to each tissue (foliage, branch, stem, coarse, fine roots) in Suwon, whereas it was mainly allocated to vigorous stem growth in Ithaca. The vigorous growth under Suwon conditions resulted in less total non-structural carbon and perhaps trees more vulnerable to O3 stress. Although the ambient O3 in Suwon (1.2 ppm.h of sum of the hourly concentrations greater than 0.06 ppm [SUM06]) was lower than that in Ithaca (2.1 ppm.h of SUM06), a reduction of 8% of total assimilated carbon was found compared to simulation without O3. Severe effects on root growth at elevated O3 (1.7 times ambient) were predicted; however, the effects on leaf growth would not be as severe.  相似文献   

18.
Over a 1-year period 16.40g Clm−2, 10.35 g Na m−2, 2.11 g SO4-S m−2, 1.24g Mg m−2, 0.39 g K m−2, 0.37 g Ca m−2 and 0.21 g inorganic N m−2 were deposited in precipitation 450 m inland on the eastern coastal plain of sub-Antarctic Marion Island (46°54′S, 37°45′E). Dissolved PO4-P and organic forms of N were not detected in the precipitation samples. Concentrations of Cl, Na, Mg, Ca and K, as well as the total ionic concentration in the precipitation samples were significantly negatively correlated with the amount of precipitation. The ionic concentration order (Cl > Na > SO4-S > Mg > K ≈ Ca) in the precipitation was very similar to that in the surrounding ocean. It is likely that most of the inorganic N found in the precipitation originated in penguin rookeries on the nearby shore zone. A comparison is made between precipitation inputs of nutrients at the island and those at other subpolar sites in the S and N Hemispheres.  相似文献   

19.
Twelve hours integrated fine particles (PM2.5) and 24-h average size-segregated particles were collected to investigate the chemical characteristics and to determine the size distribution of ionic species during October–December 1999 in three cities of different urban scale; Chongju, Kwangju, and Seoul, Korea. Concentrations of 5-min PM2.5 black carbon (BC) and hourly criteria air pollutants (PM10, CO, NOx, SO2, and O3) were also measured using the Aethalometer and ambient air monitoring system, respectively.Highest PM2.5 mass concentrations at Chongju, Kwangju, and Seoul sites were 63.0, 77.9, and 143.7 μg m−3, respectively. For the time period when highest PM2.5 mass occurred, BC level out of PM2.5 chemical species was highest at both Chongju and Kwangju, and highest NO3 (23.6 μg m−3) followed by BC (23.1 μg m−3) were observed at Seoul site, indicating that highest PM2.5 pollution is closely associated with the traffic emissions. Strong relationships of Fe with BC and Zn at both Kwangju and Seoul sites support that the Fe and Zn measured there are originated partly from same source as BC, i.e. diesel traffics. However, it is suggested that the Fe measured at Chongju is most likely derived from dispersion of soil dust.The size distributions of SO42−, NO3, and NH4+ ionic species indicated similar unimodal distributions at all sampling sites. However, different unimodal patterns in the accumulation mode size range with a peak in the smaller size (0.28–0.53 μm, condensation mode) in both Kwangju and Seoul, and in the relatively larger size (0.53–1.0 μm, droplet mode) in Chongju, were found. The potassium ion under the study sites dominates in the fine mode, and its size distribution showed unimodal character with a maximum in the size range 0.56–1.0 μm.  相似文献   

20.
A multiple linear regression model was used to investigate seasonal and long-term trends in concentrations of ozone (O3) and acid-related substances at the Saturna Island monitoring station in southwestern British Columbia from 1991 to 2000. Statistically significant primary (dominant) cycles with a period of 1 yr were found for O3, sulfur dioxide (SO2), nitric acid (HNO3), and aerosol concentrations of sulfate (SO4(2-)), calcium (Ca2+) and chloride (Cl-). Of these, peak median concentrations occurred during the spring for O3 and Ca2+, during the warmer, drier months (April-September) for SO4(2-) and HNO3, and during the cooler, wetter months (October-March) for SO2 and Cl-. Statistically significant secondary cycles of 6 months duration were seen for concentrations of O3, SO4(2-), HNO3, Ca2+, and Cl-. Daily maximum O3 concentrations exhibited a statistically significant increase over the period of record of 0.33 +/- 0.26 ppb/yr. Statistically significant declines were found for concentrations of SO2, SO4(2-), HNO3, Ca2+, and potassium, ranging from 20 to 36% from levels at the start of the sampling period. Declines in ambient concentrations of SO2, SO4(2-), and HNO3 reflect local declines in anthropogenic emissions of the primary precursors SO2 and NOx over the past decade. Trends in Ca2+ and potassium ion concentrations are in line with a broader North American declining trend in acid-neutralizing cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号