首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Relationships between social status and levels of body reserves stored by members of greenfinch (Carduelis chloris) flocks in winter were investigated. In addition, the adjustment of reserves by birds of different rank to experimental changes in food predictability and to changed weather conditions were examined. Birds with low social status carried overall larger body reserves than high-ranked birds. The results of the experiments suggest that this was mainly because subordinates, due to their low priority to food access, perceived future foraging success as less predictable than dominants. In response to severe weather, which probably increased the risk of starvation for birds, dominants temporarily increased their reserves more than subordinates. This response also indicated that birds with low social status carried larger reserves than high-ranked birds, and demonstrated that dominants could increase food intake when there was a risk of energetic shortfall. The results suggest that fattening strategies in greenfinches depend on social status. In winter, subordinates may be forced to carry larger reserves than dominants to safeguard against social constraints in access to food during critical times. As body reserves may be costly to carry and acquire, this should reduce the probability of surviving the winter for subordinates compared to dominants. Received: 2 March 1995/Accepted after revision: 13 April 1996  相似文献   

2.
It has been argued that the body mass levels achieved by birds are determined by the trade-off between risks of starvation and predation. Birds have also been found to reduce body mass in response to an increased predation risk. During migration, the need of extra fuel for flights is obvious and crucial. In this study, migratory blackcaps (Sylvia atricapilla) were subject to an experimental stopover situation where the predation risk was manipulated by exposure to a stuffed predator. Blackcaps that perceived an imminent risk of predation increased their food intake and fuel deposition rate during the first period of stopover compared with a control group. The pattern of night activity indicates that birds that were exposed to the predator also chose to leave earlier than birds in the control group. Since there was no cover present at the stopover site, birds might have perceived the risk of predation as higher regardless of whether they were foraging or not. Under such circumstances it has been predicted that birds should increase their foraging activity. The findings in this study clearly indicate that birds are able to adjust their stopover behaviour to perceived predation risk. Received: 8 January 1997 / Accepted after revision: 11 April 1997  相似文献   

3.
Summary Risk-sensitive foraging theory predicts that predators which face starvation if there is a temporary shortfall in their food supply should choose feeding sites on the basis of variation in as well as mean expected reward rate. For a given mean reward rate they should choose high variance feeding sites (be risk-prone) if they are running below energy requirement, but low variance sites (be risk-averse) if they are running above.Common shrews presented with a choice between constant and variable feeding stations were more likely to visit the variable station when they were running below energy requirement and more likely to visit the constant station when they were running above. However, the tendency towards risk-aversion above requirement was greater than that towards risk-proneness below.When all shrews were considered together, the probability of visiting the variable station correlated negatively and continuously with intake relative to requirement.  相似文献   

4.
We examined the risk-sensitive foraging behaviour of the round-eared elephant shrew by open-economy choice experiments, in which animals were deprived of food immediately prior to experiments but given food ad libitum afterwards, to test the energy budget rule. The energy budget rule states that if an animal's (daily) energy budget is negative it should behave in a risk-prone manner. A risk-prone elephant shrew should select food from a more variable rather than a constant feeding station, although both feeding stations yield the same average return. The choice of a variable station can indicate the degree to which an animal is an energy-shortfall minimizer. Elephant shrews running below energy requirement did not choose feeding stations in accordance with the rule. Under laboratory conditions, approximating either average summer or winter temperatures, elephant shrews showed risk-averse behaviour. A polycyclic activity profile, the ability to switch the diet, and greater than expected physiological control over energy balance, may favour a continuously foraging animal such that short-term energy deficits are minimized. We argue that, under these conditions, a risk-averse response to reward-size variance is expected, because an elephant-shrew may not reliably perceive those circumstances under which risk-prone behaviour should be adopted.  相似文献   

5.
Summary I studied the foraging behaviour of adults in three different-sized groups of yellow baboons (Papio cynocephalus) at Amboseli National Park in Kenya to assess the relationship between group size and foraging efficiency in this species. Study groups ranged in size from 8 to 44 members; within each group, I collected feeding data for the dominant adult male, the highest ranking pregnant female, and the highest ranking female with a young infant. There were no significant differences between groups during the study in either the mean estimated energy value of the food ingested per day for each individual (385±27 kJ kg-1 day-1) or in the estimated energy expended to obtain that food (114±3 kJ kg-1 day-1). Mean foraging efficiency ratios, which reflect net energy gain per unit of foraging time, also did not vary as a function of the size of the group in which the baboons were living. There was substantial variation between days in the efficiency ratios of all animals; this was the result of large differences in energy intake rather than in the energy expended during foraging itself. The members of the smallest group spent on the average only one-half as much time feeding each day as did individuals in the two larger groups. However, they obtained almost as much energy while foraging, primarily because their rate of food intake while actually eating tended to be higher than the rate in the other groups. The baboons in the small group were observed closer to trees that they could climb to escape ground predators, and they also were more likely to sit in locations elevated above the ground while resting. Such differences would be expected if the members of the small group were less able to detect approaching predators than individuals that lived in the larger groups. The results of this study suggest that predator detection or avoidance, rather than increased foraging efficiency, may be the primary benefit of living in larger groups in this population.  相似文献   

6.
van Gils JA  Spaans B  Dekinga A  Piersma T 《Ecology》2006,87(5):1189-1202
Besides the "normal" challenge of obtaining adequate intake rates in a patchy and dangerous world, shorebirds foraging in intertidal habitats face additional environmental hurdles. The tide forces them to commute between a roosting site and feeding grounds, twice a day. Moreover, because intertidal food patches are not all available at the same time, shorebirds should follow itineraries along the best patches available at a given time. Finally, shorebirds need additional energy stores in order to survive unpredictable periods of bad weather, during which food patches are covered by extreme tides. In order to model such tide-specific decisions, we applied stochastic dynamic programming in a spatially explicit context. Two assumptions were varied, leading to four models. First, birds had either perfect (ideal) or no (non-ideal) information about the intake rate at each site. Second, traveling between sites was either for free or incurred time and energy costs (non-free). Predictions were generated for three aspects of foraging: area use, foraging routines, and energy stores. In general, non-ideal foragers should feed most intensely and should maintain low energy stores. If traveling for such birds is free, they should feed at a random site; otherwise, they should feed close to their roost. Ideal foragers should concentrate their feeding around low tide (especially when free) and should maintain larger energy stores (especially when non-free). If traveling for such birds is free, they should feed at the site offering the highest intake rate; otherwise, they should trade off travel costs and intake rate. Models were parameterized for Red Knots (Calidris canutus) living in the Dutch Wadden Sea in late summer, an area for which detailed, spatially explicit data on prey densities and tidal heights are available. Observations of radio-marked knots (area use) and unmarked knots (foraging routines, energy stores) showed the closest match with the ideal/non-free model. We conclude that knots make state-dependent decisions by trading off starvation against foraging-associated risks, including predation. Presumably, knots share public information about resource quality that enables them to behave in a more or less ideal manner. We suggest that our modeling approach may be applicable in other systems where resources fluctuate in space and time.  相似文献   

7.
In most mammals, female fertility and reproduction are strongly influenced by nutritional status and, therefore, by foraging conditions. Here, we investigate the relationship between food resources, feeding competition, energy intake and reproduction in a group of wild female Assamese macaques (Macaca assamensis) in northeastern Thailand. Over 2,100 h of data on feeding behaviour, energy intake and activity budgets were combined with data on resource characteristics, female reproduction and physical condition. We found that an increase in food availability had a positive effect on female energy intake and conception rates. In addition, it appeared that females incurred energetic costs during lactation and that females with a better physical condition during the mating season were more likely to conceive. The annual birth season occurred a few months before the annual peak in food availability, causing peak lactation to coincide with a period of high food availability. This suggests that females use the increased food abundance to compensate for the energetic costs of lactation. Neither energy intake rates nor activity budgets were influenced by female dominance rank, even during periods when the levels of contest competition were predicted to be high. In line with this, we found no evidence for rank-related differences in reproduction. The apparently limited influence of feeding competition in female Assamese macaques adds to the debate on the extent to which patterns in feeding competition and fitness can reliably be predicted based on ecological conditions. We suggest that this may partially be resolved by including potential competition-reducing mechanisms into the predictive framework.  相似文献   

8.
Availability of food resources and individual characteristics can influence foraging behaviour, which can differ between males and females, leading to different patterns of food/habitat selection. In dimorphic species, females are usually more selective in food choice, show greater bite rates and spend more time foraging than males. We evaluated sexual differences in foraging behaviour in Apennine chamois Rupicapra pyrenaica ornata, during the warm season, before the rut. Both sexes selected nutritious vegetation patches and spent a comparable amount of time feeding. However, males had a significantly greater feeding intensity (bite rate) and a lower search effort for feeding (step rate), as well as they spent more time lying down than females. Females selected foraging sites closer to refuge areas than males. In chamois, sexual size dimorphism is seasonal, being negligible in winter–spring, but increasing to 30–40 % in autumn. Our results suggest that males enhance their energy and mass gain by increasing their food intake rate during the warm season, to face the costs of the mating season (November). Conversely, females seem to prioritize a fine-scale selection of vegetation and the protection of offspring. A great food intake rate of males in the warm season could have developed as a behavioural adaptation leading herbivores to the evolutionary transition from year-round monomorphism to permanent dimorphism, through seasonal dimorphism.  相似文献   

9.
Summary Female mammals experience larg changes in time and energy budgets associated with reproduction and these may influence the foraging strategies of individuals. I studied the changes in foraging behavior associated with reproduction in female hoary bats, Lasiurus cinereus. As lactation progressed, individuals departed to forage earlier in the evening and spent more time foraging per night and less time roosting with their young. Foraging time increased by at least 73% between early lactation and fledging and then declined as the young became independent. Females with two young foraged for longer than did those with one and females with pre- and postfledging young foraged in different habitats. The changes in foraging time suggest that foraging activity of female L. cinereus is constrained and individuals act as time minimizers, adjusting their foraging behavior to meet current energy demand. Predation risk is unlikely to constrain the behavior of these bats. However, maximizing energy intake throughout lactation may not be the optimal strategy because storing excess energy increases flight cost and may reduce foraging efficiency. The need to keep newborn young warm may also influence foraging time. Such constraints, causing changes in foraging activity, may alter the availability of habitats and prey and must be considered when modelling foraging strategies. In addition, changes in flight time may significantly alter the energy budgets of bats in different stages of reproduction.  相似文献   

10.
A predator's foraging performance is related to its ability to acquire sufficient information on environmental profitability. This process can be affected by the patchy distribution and clustering of food resources and by the food intake process dynamics.We simulated body mass growth and behaviour in a forager acting in a patchy environment with patchy distribution of both prey abundance and body mass by an individual-based model. In our model, food intake was a discrete and stochastic process and leaving decision was based on the estimate of net energy gain and searching time during their foraging activities. The study aimed to investigate the effects of learning processes and food resource exploitation on body mass and survival of foragers under different scenarios of intra-patch resource distribution.The simulation output showed that different sources of resource variability between patches affected foraging efficiency differently. When prey abundance varied across patches, the predator stayed longer in poorest patches to obtain the information needed and its performance was affected by the cost of sampling and the resulting assessment of the environment proved unreliable. On the other hand, when prey body mass, but not abundance, varied among the patches the predator was quickly able to assess local profitability. Both body mass and survival of the predator were greatly affected by learning processes and patterns of food resource distribution.  相似文献   

11.
Animals that forage in groups can produce their own food patches or scrounge the food discoveries of their companions. Mean tactic payoffs are expected to be the same at equilibrium for phenotypically equal foragers. Scrounging is also typically viewed as a risk-averse foraging strategy that provides a more even food intake rate over time. The occurrence of scrounging and the payoffs from different foraging modes have rarely been investigated in the field. Over two field seasons, I examined patch sharing in semipalmated sandpipers (Calidris pusilla) foraging on minute food items at the surface of the substrate. Birds could find patches on their own, a producing event, or join the food patches discovered by others, a scrounging event. I found that the average search time per patch did not differ between producing and scrounging but that the average time spent exploiting a patch was reduced nearly by half when scrounging. As a result, the proportion of time spent exploiting a patch, a measure of foraging payoffs, was significantly lower when scrounging. The variance in payoffs was similar for producing and scrounging. When producing their own patches, individuals that scrounged spent the same proportion of time exploiting a patch as those that only produced. However, within the same individuals, the search time for a scrounged patch was longer than the search time for a produced patch. The results show unequal payoffs for producing and scrounging in this system and suggest that low success in finding patches elicited scrounging.  相似文献   

12.
We studied the behavior of 13 radiotagged cranes dispersing from a communal roost over days when they changed their main daily foraging area between consecutive days during two winter seasons. Individuals went to a new foraging zone when on the previous day their morning food intake had fallen below their mean morning food intake measured over the whole winter. Food intake on the day before a change in foraging area was positively correlated with dominance rank. Dominant cranes changed to new zones with higher numbers of birds and food density, while subordinate cranes went to new zones with lower numbers of birds. As a result, all birds increased their food intake over that of the previous day. Dominant cranes remained more faithful to their most preferred foraging zone, where they spent 69% of the mornings, while subordinate birds were more mobile, switching among zones frequently. Dominant birds left the roost later than subordinate birds on the days they changed to a new zone, which could be used to track the main departing flows. The results suggest that the dynamics that led to a truncated phenotype-limited distribution were determined by social dominance and food abundance, with dominant cranes shifting to a new zone to maintain their high intake levels and subordinates changing more frequently whenever their daily intake did not reach the minimum metabolic requirements. Received: 16 December 1996 / Accepted after revision: 22 February 1997  相似文献   

13.
There is a large literature dealing with daily foraging routines of wild birds during the non-breeding season. While different laboratory studies have showed that some bird activity patterns are a persistent property of the circadian system, most of field studies preclude the potential role of an endogenous circadian rhythm in controlling bird’s foraging routines. In this study we compared the patterns of diurnal foraging activity and intake rates of migrating black-tailed godwits, Limosa limosa (radio-tagged and non-tagged individuals) at two stopover sites (habitats) with different environmental characteristics, aiming at identifying proximate factors of bird activity routines. To gain insights into the role of food availability in control of such foraging routines, we also estimated foraging activity patterns in captive godwits subjected to constant food availability. Captive and wild black-tailed godwits showed a persistent bimodal activity pattern through daylight period. Food availability had a significant effect on the intake rates, but had a subtler effect on foraging and intake rate rhythms. Temperature and wind speed (combined in a weather index) showed non-significant effects on both rhythms. Although we could not discard a role for natural diurnal changes in light intensity, an important timing cue, our findings support the idea that an endogenous circadian rhythm could be an important proximate factor regulating foraging activity and food items taken per unit time of wild black-tailed godwits during migration.  相似文献   

14.
Summary The foraging decisions of animals often reflect a trade-off between the risk of predation and efficient foraging. One way an animal may reduce the risk of predation, and hence exploit a resource patch in relative safety, is by foraging in a group. Solitary pioneer sparrows often recruit others to a food source by making chirrup calls in order to establish foraging flocks. This study describes the decisions of house sparrows that arrive at food resources of different risks of predation. Four feeding sites at different distances from a perching site and from an observer were presented to sparrows. When the feeder was adjacent to the perching site and far from the observer, the pioneers chirruped less frequently and were more likely to forage alone than when the feeder was in the other three positions. There were differences in the scanning behaviour of sparrows at these sites, suggesting that they were responding to different risks of predation. Furthermore, the chirrup rates of pioneer sparrows in this study and a previous study were found to be negatively correlated with maximum daily temperature. This is consistent with the hypothesis that energy requirements may affect the flock establishment decisions of sparrows, and that the benefits of foraging in flocks may be greater at lower temperatures.  相似文献   

15.
The energy efficiency of the foraging behavior of Astropecten articulatus (Say) was evaluated in the laboratory. Individuals utilized in the study were collected in the northern Gulf of Mexico from 1990 to 1992. Sea stars presented with equal numbers and weights of low-quality and high-quality prey consistently selected prey of the higher quality. Choice of prey appeared to be mediated by contact chemoreception. Individuals presented with equal weights or equal numbers of different-sized prey models demonstrated a significant preference for smaller prey. Size-selective feeding may be attributable to the ease of manipulation and ingestion of smaller prey, which mazimizes food intake per unit time. In the absence of prey, A. articulatus exhibited a directional pattern of movement. However, as prey were encountered, both the frequency and magnitude of angular deviations in the foraging path increased, resulting in increased foraging in areas of higher prey density. This response to prey availability may increase foraging efficiency by maximizing the rate of prey encounter. Like four other species of the genus Astropecten, A. articulatus exhibited two peaks of activity corresponding with dawn and dusk. Diurnal activities with periods of increased prey availability or periods during which predators are diminished or absent. The sea star A. articulatus exhibits foraging behaviors consistent with the maximization of net energy intake per unit foraging time.  相似文献   

16.
Most studies suggest that during times of nutritional stress, an animal faced with two foraging choices should follow a risk-prone strategy, choosing the option with highest payoff variance. This “scarcity/risk” hypothesis was developed to account for the foraging patterns of small animals with high metabolic rates susceptible to the threat of starvation. In this paper, we propose that animals should also be risk-prone when their diet quality is particularly high, far exceeding that which is needed to survive. Under these circumstances, the costs of experiencing a low or negative payoff can easily be recouped. We suggest that large-bodied omnivores are most likely to adopt this “abundance/risk” strategy. We investigate this question among wild chimpanzees (Pan troglodytes) that choose between a risk-averse strategy of feeding on plant material and a risk-prone strategy of hunting red colobus monkeys. Using 14 years of data on the Kanyawara chimpanzees of Kibale National Park, Uganda, we find strong evidence that chimpanzees follow the “abundance/risk” strategy. Both hunting rate (hunts/100 observation hours) and the probability of hunting upon encountering red colobus monkeys were positively correlated with seasonal consumption of ripe drupe fruits, a class of preferred food associated with elevated reproductive performance by females. Critically, these results remained statistically significant after controlling for the potentially confounding effects of male chimpanzee party size and the presence of sexually receptive females. These findings suggest that the relationship between risk-sensitive foraging and diet quality depends upon the daily probability of starvation, the number of alternative foraging strategies, and the degree to which diet quality satisfies an animal’s nutritional requirements.  相似文献   

17.
Predation risk and foraging behavior of the hoary marmot in Alaska   总被引:2,自引:0,他引:2  
Summary I observed hoary marmots for three field seasons to determine how the distribution of food and the risk of predation influenced marmots' foraging behavior. I quantified the amount of time Marmota caligata foraged in different patches of alpine meadows and assessed the distribution and abundance of vegetation eaten by marmots in these meadows. Because marmots dig burrows and run to them when attacked by predators, marmot-toburrow distance provided an index of predation risk that could be specified for different meadow patches.Patch use correlated positively with food abundance and negatively with predation risk. However, these significant relationships disappeared when partial correlations were calculated because food abundance and risk were intercorrelated. Using multiple regression, 77.0% of the variance in patch use was explained by a combination of food abundance, refuge burrow density, and a patch's distance from the talus where sleeping burrows were located. Variations in vigilance behavior (look-ups to search for predators while feeding) according to marmots' ages, the presence of other conspecifics, and animals' proximity to their sleeping burrows all indicated that predation risk influenced foraging.In a forage-manipulation experiment, the use of forage-enhanced patches increased six-fold, verifying directly the role of food availability on patch used. Concomitant with increased feeding, however, was the intense construction of refuge burrows in experimental patches that presumably reduced the risk of feeding. Thus, I suggest that food and predation risk jointly influence patch use by hoary marmots and that both factors must be considered when modeling the foraging behavior of species that can be predator and prey simultaneously.  相似文献   

18.
Group foraging allows the co-existence of a strategy (producer) that involves searching for food, and its alternative (scrounger) exploiting the food of the producer. The use of producer and scrounger strategies has been modelled as an alternative-option scramble which assumes strong negative frequency-dependence of the scrounger's pay-offs. We tested this assumption in a flock feeding situation by manipulating the proportion of scroungers in flocks of spice finches, Lonchura punctulata. In a first experiment we found that: (1) the food intake of scroungers, and to a lesser extent producers, was negatively affected by an increase in the proportion of scroungers; (2) the food intake of producers and scroungers was equal when the proportion of scroungers was small, suggesting that producers, who exploited 35.4% of their patches by scrounging were opportunistically adjusting their use of the strategies until the pay-offs equalized. In a second experiment we tested whether finches could vary their use of the two strategies in response to changes in foraging conditions brought about by an increase in the cost of producing. As predicted by the game, finches reduced their use of the producer strategy and increased their use of the scrounger strategy when the cost of producing increased. These results suggest that spice finches can alter their allocation to each foraging alternative by experience and that the producer-scrounger game is a realistic model for predicting group foraging decisions. Correspondence to: L.-A. Giraldeau  相似文献   

19.
Summary Foraging theory depicts dietary choice as a function of prey quality and absolute abundance. Ecological processes, however, can depend on the way foragers respond to the relative abundances of available prey types; several models for frequency-dependent foraging adequately describe these responses. Our laboratory experiments with white-throated sparrows investigated preferential choice of two food rewards as we manipulated both reward quality and relative abundance. In any single experiment the two rewards provided the same mean food quantity, but the variances differed. Average energy budgets predicted risk-aversion, so that foraging preference should decrease as reward variance increases. We presented each two-reward pairing at availability ratios of 1:2, 1:1, and 2:1 for three consecutive days. By the third day risk-aversion exceeded preference for reward variance significantly. When relative abundances of the low and high variance rewards were not equal, the birds tended to prefer the rare over the common reward. This response began before the birds had thoroughly sampled the reward distributions. Preference for rarity apparently constrained the birds' economic response to reward variance levels.  相似文献   

20.
Summary Populations of baboon (Papio sp.) at geographic and climatic extremes for the genus show a tendency to one-male organization, whereas most baboons live in multimale social groups; this effect has been attributed largely to limitation of food supply, but baboons' complex diet has hindered proper nutritional analyses. To test these optimal-diet explanations of social variation, we quantified intake and used phytochemical analysis of foods to compare the nutrition, during seasonal changes, of two groups of mountain baboons (P. ursinus) living at different altitudes of a continuous grassland habitat. The majority of plant foods were eaten uniquely by one or other group, though their altitudinal separation was only 400 m, and the time budget of feeding choices varied with age-sex class as well as season. Converting to a common currency of nutrients reveals that baboons gained the same yield from a unit time spent foraging (whether this is measured in edible dry weight, or simply protein) in both groups, despite their differing mean altitude, whereas seasonal variation was large and statistically significant. Increased feeding time at the winter bottleneck made no effective compensation for the poorer food yields: in late winter there was a minimum for daily nutrient gain at both altitudes. Apparently this population is already at an extreme for the time animals devote to foraging in winter, when they rely on inconspicuous and slow-to-harvest swollen shoot bases and underground plant storage organs. Since an individual's nutrient yield does not vary with altitude, we conclude that socioecological parameters are effectively optimized for feeding. Since contest competition is absent, this adjustment of foraging efficiency is largely through the effect of differential density on scramble competition. Differences in social structure are considered to be a secondray consequence of optimal foraging, mediated through altitudinal variation in either population density or in day range limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号