首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
为了有效控制燃煤陶瓷窑炉黑烟的污染,根据理论和实验研究的结果,选择合适的润湿剂和助剂,研究了阴离子表面活性剂Y1、非离子表面活性剂F1与无机盐Z1复配后溶液表面张力的变化,筛选出了表面张力较小的配比。利用所选配比对燃煤陶瓷窑炉黑烟的润湿作用进行了W alker实验研究和理论分析。实验结果表明,0.5 mmol/L Y1+50mmol/L Z1+0.03 mmol/L F1的配比对黑烟的润湿作用较好。并对其润湿机理进行了探讨。  相似文献   

2.
湿法净化黑烟中炭黑颗粒物的关键在于降低吸收液的表面张力并以高性能絮凝剂使其从溶液中絮凝、沉降以利于分离。选用十六烷基三甲基溴化胺(CTAB)为主要表面活性剂,使之与十二烷基苯磺酸钠(SDBS)和月桂醇聚氧乙烯(9)醚(AEO-9)进行复配实验,研究了复配液的表面张力,再向最低表面张力的复配表面活性剂溶液中投加絮凝剂聚合氯化铝(PAC)和聚丙烯酰胺(PAM),探讨絮凝剂的添加对黑烟颗粒沉降和絮凝的影响.实验结果表明:同时添加表面活性剂CTAB,SDBS和PAC,并使之浓度分别为0.5 mmol/L,0.4 mmol/L和200 mg/L时,炭黑颗粒的沉降效果最好,沉降率高达94%,且絮凝体较大,沉降时间仅为2 min。  相似文献   

3.
为提高湿式除尘装置对炭黑颗粒物的去除效率,通过向吸收液中添加复配表面活性剂以提高吸收液对炭黑的润湿性,投加絮凝剂使进入吸收液的炭黑颗粒发生凝聚和沉降,从而使吸收液得以循环利用。其中表面活性剂的复配以非离子表面活性剂月桂醇聚氧乙烯(9)醚(AEO-9)为主,与十二烷基苯磺酸钠(SDBS)、十六烷基三甲基溴化胺(CTAB)和壬酚基聚氧乙烯醚(TX-10)分别复配,筛选出复配效果最好的一组复配液;然后投加絮凝剂,探讨絮凝剂的加入对吸收液中炭黑颗粒物絮凝沉降的影响。结果表明,在AEO-9浓度为0.05mmol/L,TX-10浓度为0.09mmol/L时,吸收液的表面张力最小,为36.75mN/m;投加无机絮凝剂聚合氯化铝(PAC)浓度为100mg/L时,经15min沉降,炭黑的沉降率可达88.1%,上清液中悬浮颗粒的平均粒径为6.36μm。  相似文献   

4.
以生物表面活性剂鼠李糖脂(RL)为表面活性剂,中长碳链正构醇(正丁醇、正戊醇、正己醇、正庚醇及正辛醇)为助表面活性剂,采用滴定法制备RL/柴油/正构醇/水柴油微乳体系,并考察了表面活性剂用量(Km)、助表面活性剂醇的种类及用量(δas)及离子强度对柴油微乳体系最大增溶水量(Wo)的影响,并对不同条件下获得的柴油微乳体系的运动粘度(μ)和表面张力(γ)进行了表征。通过荧光法测得RL在柴油中的临界胶束浓度CMC为7g/L。当生物表面活性剂与柴油的质量比Km为0.02,助表面活性剂选用正庚醇且醇与表面活性剂的质量比δgs为0.1,NaOH溶液质量分数为0.06%时,柴油微乳体系的肛和T较低,形。最大,性能较佳。  相似文献   

5.
三氯乙烯(TCE)是污染土壤和地下水中检出率较高的氯代有机物。以TCE为研究对象,考察了地下水无机成分和腐殖酸对高锰酸钾氧化TCE的影响,研究了不同离子强度下的MnO,颗粒行为,并测定了泥浆系统中TCE的氧化效果,结果表明:当TCE初始浓度为20mg/L、高锰酸钾与TCE的摩尔比为2:1,离子浓度〈0.1mol/L时,TCE去除率可达98%以上,Na^+、Cl^-、HCO3-对TCE的去除率影响甚微,但离子强度对MnO2的沉淀生成影响显著;0.1mol/L的K^+对TCE的去除有一定程度的抑制;0.1mmol/L的Fe^2+和腐殖酸对TCE的氧化有显著负面影响。泥浆系统实验进一步验证了有机质对高锰酸钾氧化TCE的影响很大。  相似文献   

6.
根据密云水库供水现状,针对突发性无机金属污染事件,采用聚合氯化铝辅助化学沉淀法进行应急处理。选用Cu2+、Fe2+、Zn2+和Cd2+ 4种金属离子为目标污染物,首先通过小试实验确立了最佳混凝处理条件。结果表明,调节pH值为8.0左右,可使初始浓度为5mg/L和10mg/L的Cu2+浓度降至0.96mg/L和0.67mg/L;初始浓度为1.5mg/L和3mg/L的Fe2+浓度降至0.27mg/L和0.24mg/L;初始浓度为0.05mg/L和0.1mg/L的Cd2+浓度降为0.0089mg/L和0.0078mg/L;调节pH值为9.0时,可使初始浓度为5mg/L和10mg/L的Zn2+浓度降至0.57mg/L和0.48mg/L。4种污染物出水浓度均低于国家饮用水标准。在小试基础上,在北京第九水厂开展无机金属污染处理的中试实验,结果表明所选用的聚合氯化铝辅助化学沉淀法简便易行,可实现污染物快速、有效去除。  相似文献   

7.
以旋转填充床(RPB)作为反应装置,研究了Fenton工艺与Fenton+O3工艺处理模拟阿莫西林废水的效果,考察了FeSO4·7H2O的投加量、温度、旋转床转速、液体流量及pH对C0D去除率的影响。实验表明,Fenton+O3工艺的COD脱除率及BOD5/COD相对于Fenton工艺分别提升26.7%和140%。该工艺在pH为3、温度为25℃、液体流量30L/h、气体流量2.5L/h、转速800r/min、H2O2的投加量为1mmol/L及Fe2+投加量为0.4mm01/L的条件下,100mg/L的模拟阿莫西林废水中COD的去除率达到57.9%,BOD5/COD从0增加到0.36,满足后续生化处理要求。  相似文献   

8.
通过静态动力学和热力学吸附实验,研究了温度、共存离子以及溶质的初始浓度对As(V)在金红石TiO2颗粒表面吸附的影响,探讨了As(V)在金红石TiO2颗粒表面吸附特性及机理。结果表明,在As(V)初始浓度为10mg/L,pH为7的条件下,25℃时的吸附量0.41mg/g高于30℃时的吸附量0.31mg/g,As(V)在金红石TiO,上的吸附为放热过程。CaCl2和MgCl2的添加对As(V)在金红石TiO2表面吸附起到明显的促进作用。T=25℃,Ca2+或Mg2+浓度为10mmol/L时,As(V)吸附量分别为0.64和0.56mg/g,Ca2+比Mg2+对As(V)吸附促进作用强。As(V)在金红石TiO2的吸附等温线符合Frendlich方程,Lagergren二级动力学方程能较好地描述As(V)在金红石TiO2颗粒表面吸附的动力学过程。  相似文献   

9.
UV/Fenton氧化降解水溶液中甲基叔丁基醚的试验研究   总被引:4,自引:0,他引:4  
采用UV/Fenton技术对污染水体中的甲基叔丁基醚(MTBE)进行了氧化降解试验。结果表明,在室温条件下,当H2O2为10mmol/L,FC+为2mmol/L,pH为2.4时,起始摩尔浓度为1mmol/L的MTBE在30min内可去除99%;结果还显示了MTBE的降解分两个阶段,第一阶段是在UV/Fe^2+/H2O2下的快速降解,第二阶段由于Fe^2+的大量消耗而降解相对较慢。  相似文献   

10.
在无隔膜电解槽中,采用SPR(Ru—Ir—TiO2)为阳极,石墨为阴极,考察了Fe(Ⅱ)EDTA/H2O2电催化降解甲基橙(methylorange)模拟废水的影响,发现EDTA很大程度上促进了类电Fenton试剂对甲基橙模拟废水的降解。实验研究表明,在外加电压为5.0V,EDTA:Fe2+=2:1(摩尔比,Fe2+=40mmol/L),H202=48mmot/L,电解质Na2SO4=40mmol/L,废水pH值为(6.5±0.1)的条件下,降解260mg/L的甲基橙模拟废水90min,EDTA的加入可以使甲基橙模拟废水的脱色率由29.5%上升到78.4%,COD由571.429mg/L降至80mg/L,COD的降解率为86%,EDTA在此过程中既是催化剂又是反应物,可有效避免EDTA带来二次环境污染的可能性。  相似文献   

11.
Organic contaminants that decrease the surface tension of water (surfactants) can have an effect on unsaturated flow through porous media due to the dependence of capillary pressure on surface tension. We used an intermediate-scale 2D flow cell (2.44 x 1.53 x 0.108 m) packed with a fine silica sand to investigate surfactant-induced flow perturbations. Surfactant solution (7% 1-butanol and dye tracer) was applied at a constant rate at a point source located on the soil surface above an unconfined synthetic aquifer with ambient groundwater flow and a capillary fringe of approximately 55 cm. A glass plate allowed for visual flow and transport observations. Thirty instrumentation stations consist of time domain reflectometry probes and tensiometers measured in-situ moisture content and pressure head, respectively. As surfactant solution was applied at the point source, a transient flow perturbation associated with the advance of the surfactant solution was observed. Above the top of the capillary fringe the advance of the surfactant solution caused a visible drainage front that radiated from the point source. Upon reaching the capillary fringe, the drainage front caused a localized depression of the capillary fringe below the point source because the air-entry pressure decreased in proportion to the decrease in surface tension caused by the surfactant. Eventually, a new capillary fringe height was established. The height of the depressed capillary fringe was proportional to height of the initial capillary fringe multiplied by the relative surface tension of the surfactant solution. The horizontal transport of surfactant in the depressed capillary fringe, driven primarily by the ambient groundwater flow, caused the propagation of a wedge-shaped drying front in the downgradient direction. Comparison of dye transport during the surfactant experiment to dye transport in an experiment without surfactant indicated that because surfactant-induced drainage decreased the storage capacity of the vadose zone, the dye breakthrough time to the water table was more than twice as fast when the contaminant solution contained surfactant. The extensive propagation of the drying front and the effect of vadose zone drainage on contaminant breakthrough time suggest the importance of considering surface tension effects on unsaturated flow and transport in systems containing surface-active organic contaminants or systems, where surfactants are used for remediation of the vadose zone or unconfined aquifers.  相似文献   

12.
This paper explores the possibility of removing hydrocarbons (HCs) and trace elements from synthetic and industrial effluents using treated bark as biosorbent. Coniferous bark was treated either chemically (Tc) or biologically (Tb) to eliminate soluble organic compounds of bark. The removal efficiency (RE) of the HCs from a synthetic oil-water mixture containing spent diesel motor oil exceeds 95% using 2 g/L of treated bark mixed with a synthetic oil-water mixture containing 2 g/L of spent oil. Under these conditions, the retention capacity (RC) was approximately 1 g HC/g dry substrate. The sorption reaction seems to be quasi-instantaneous, and the retention capacity of spent oil on treated bark increases as the temperature augments. This implies that the retention mechanism is related to the capillary action. Results of Fourier transform infrared (FTIR) spectroscopy indicate that spent oil is mainly composed of alkanes. They also suggest that no chemical bonds between Tc and spent oil were established. Measurement of the surface tension of spent oil and the wetting index of the bark suggests that only spent oil will be retained by the substrate. Treatment of an industrial effluent containing 14.4 g/L of total HCs was performed using Tc. It was possible to remove 97% of HCs and retain some trace elements such as Al, Ca, Fe, Mg, S, and so on.  相似文献   

13.
Surface tensions for a wide variety of pure organic and mixed organic/salt solutions were measured at 25 and 5 °C using the Wilhelmy plate method. Langmuir adsorption parameters for the organic compounds were extracted by fitting the surface tension data to the Szyszkowski equation. In a mixed organic/salt solution, the surface tension was primarily controlled by the organic component, even when the mass ratio of salt to organic in solution exceeded threefold. Excellent agreement was found between measured surface tension values at 5 °C and those predicted by the Szyszkowski equation using Langmuir adsorption parameters extracted at 25 °C. This finding may have important implications for cloud formation studies where the onset of activation often occurs at temperatures below 25 °C.  相似文献   

14.
ABSTRACT

This paper explores the possibility of removing hydrocarbons (HCs) and trace elements from synthetic and industrial effluents using treated bark as biosorbent. Coniferous bark was treated either chemically (Tc) or biologically (Tb) to eliminate soluble organic compounds of bark. The removal efficiency (RE) of the HCs from a synthetic oil-water mixture containing spent diesel motor oil exceeds 95% using 2 g/L of treated bark mixed with a synthetic oil-water mixture containing 2 g/L of spent oil. Under these conditions, the retention capacity (RC) was ~1 g HC/g dry substrate. The sorption reaction seems to be quasi-instantaneous, and the retention capacity of spent oil on treated bark increases as the temperature augments. This implies that the retention mechanism is related to the capillary action.

Results of Fourier transform infrared (FTIR) spectros-copy indicate that spent oil is mainly composed of al-kanes. They also suggest that no chemical bonds between

Tc and spent oil were established. Measurement of the surface tension of spent oil and the wetting index of the bark suggests that only spent oil will be retained by the substrate. Treatment of an industrial effluent containing 14.4 g/L of total HCs was performed using Tc. It was possible to remove 97% of HCs and retain some trace elements such as Al, Ca, Fe, Mg, S, and so on.  相似文献   

15.
A new approach using an anionic/nonionic mixed surfactant, sodium dodecyl sulphate (SDS) with Triton X-100 (TX100), was utilized for the desorption of phenanthrene from an artificial contaminated natural soil in an aim to improve the efficiency of surfactant remediation technology. The experimental results showed that the presence of SDS not only reduced the sorption of TX100 onto the natural soil, but also enhanced the solubilization of TX100 for phenanthrene, both of which resulted in the distribution of phenanthrene in soil-water systems decreasing with increasing mole fraction of SDS in surfactant solutions. These results can be attributed to the formation of mixed micelles in surfactant solution and the corresponding decrease in the critical micelle concentration of TX100 in mixed solution. The batch desorption experiments showed that the desorption percentage of phenanthrene from the contaminated soil with mixed solution was greater than that with single TX100 solution and appeared to be positively related to the mole fraction of SDS in surfactant solution. Thus, the anionic/nonionic mixed surfactants are more effective for the desorption of phenanthrene from the contaminated soil than a single nonionic surfactant.  相似文献   

16.
We have conducted well-controlled DNAPL remediation experiments within a 2-D, glass-walled, sand-filled chamber using surfactants (Aerosol MA and Tween 80) to increase solubility and an oxidant (permanganate) to chemically degrade the DNAPL. Initial conditions for each remediation experiment were created by injecting DNAPL as a point source at the top of the chamber and allowing the DNAPL to migrate downward through a water-filled, heterogeneous, sand-pack designed to be evocative of a fluvial depositional environment. This migration process resulted in the DNAPL residing as a series of descending pools. Lateral advection across the chamber was used to introduce the remedial fluids. Photographs and digital image analysis illustrate interactions between the introduced fluids and the DNAPL. In the surfactant experiments, we found that DNAPL configured in a series of pools was easily mobilized. Extreme reductions in DNAPL/water interfacial tension occurred when using the Aerosol MA surfactant, resulting in mobilization into low permeability regions and thus confounding the remediation process. More modest reductions in interfacial tension occurred when using the Tween 80 surfactant resulting in modest mobilization. In this experiment, capillary forces remained sufficient to exclude DNAPL migration into low permeability regions allowing the excellent solubilizing properties of the surfactant to recover almost 90% of the DNAPL within 8.6 pore volumes. Injection of a potassium permanganate solution resulted in precipitation of MnO2, a reaction product, creating a low-permeability rind surrounding the DNAPL pools. Formation of this rind hindered contact between the permanganate and the DNAPL, limiting the effectiveness of the remediation. From these experiments, we see the value of performing visualization experiments to evaluate the performance of proposed techniques for DNAPL remediation.  相似文献   

17.
An agricultural by-product, natural wheat straw (NWS), was soaked in 1 % cationic surfactant (hexadecylpyridinium bromide, CPB) solution for 24 h (at 293 K), and modified wheat straw (MWS) was obtained. Analysis of FTIR, XFR, and nitrogen element showed that CPB was adsorbed onto surface of NWS. Then, MWS was used as adsorbent for the removal of light green dye (LG, anionic dye) from aqueous solution. The experiment was performed in batch and column mode at room temperature (293 K). Sodium chloride (up to 0.1 mol/L) existed in solution was not favor of LG dye adsorption. The equilibrium data were better described by Langmuir isotherm, and adsorption capacity of q m from Langmuir model was 70.01?±?3.39 mg/g. In fixed-bed column adsorption mode, the effects of initial LG concentration (30, 50, 70 mg/L) and flow rate (6.5, 9.0, 14.5 mL/min) on adsorption were presented. Thomas and modified dose–response models were used to predict the breakthrough curves using nonlinear analysis method, and both models can fit the breakthrough curves. Theoretical and experimental breakthrough curves were drawn and compared. The results implied that MWS can be used as adsorbent material to remove LG from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号