首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem consequences of cyanobacteria in the northern Baltic Sea   总被引:1,自引:0,他引:1  
Cyanobacteria of the Baltic Sea have multiple effects on organisms that influence the food chain dynamics on several trophic levels. Cyanobacteria contain several bioactive compounds, such as alkaloids, peptides, and lipopolysaccharides. A group of nonribosomally produced oligopeptides, namely microcystins and nodularin, are tumor promoters and cause oxidative stress in the affected cells. Zooplankton graze on cyanobacteria, and when ingested, the hepatotoxins (nodularin) decrease the egg production of, for example, copepods. However, the observed effects are very variable, because many crustaceans are tolerant to nodularin and because cyanobacteria may complement the diet of grazers in small amounts. Cyanobacterial toxins are transferred through the food web from one trophic level to another. The transfer rate is relatively low in the pelagic food web, but reduced feeding and growth rates of fish larvae have been observed. In the benthic food web, especially in blue mussels, nodularin concentrations are high, and benthic feeding juvenile flounders have been observed to disappear from bloom areas. In the littoral ecosystem, gammarids have shown increased mortality and weakening of reproductive success under cyanobacterial exposure. In contrast, mysid shrimps seem to be tolerant to cyanobacterial exposure. In fish larvae, detoxication of nodularin poses a metabolic cost that is reflected as decreased growth and condition, which may increase their susceptibility to predation. Cyanobacterial filaments and aggregates also interfere with both hydromechanical and visual feeding of planktivores. The feeding appendages of mysid shrimps may clog, and the filaments interfere with prey detection of pike larvae. On the other hand, a cyanobacterial bloom may provide a refuge for both zooplankton and small fish. As the decaying bloom also provides an ample source of organic carbon and nutrients for the organisms of the microbial loop, the zooplankton species capable of selective feeding may thrive in bloom conditions. Cyanobacteria also compete for nutrients with other primary producers and change the nitrogen (N): phosphorus (P) balance of their environment by their N-fixation. Further, the bioactive compounds of cyanobacteria directly influence other primary producers, favoring cyanobacteria, chlorophytes, dinoflagellates, and nanoflagellates and inhibiting cryptophytes. As the selective grazers also shift the grazing pressure on other species than cyanobacteria, changes in the structure and functioning of the Baltic Sea communities and ecosystems are likely to occur during the cyanobacterial bloom season.  相似文献   

2.
3.
Climate change effects on river flow to the Baltic Sea   总被引:1,自引:0,他引:1  
Graham LP 《Ambio》2004,33(4-5):235-241
River flow to the Baltic Sea originates under a range of different climate regimes in a drainage basin covering some 1,600,000 km2. Changes to the climate in the Baltic Basin will not only affect the total amount of freshwater flowing into the sea, but also the distribution of the origin of these flows. Using hydrological modeling, the effects of future climate change on river runoff to the Baltic Sea have been analyzed. Four different climate change scenarios from the Swedish Regional Climate Modelling Programme (SWECLIM) were used. The resulting change to total mean annual river flow to the Baltic Sea ranges from -2% to +15% of present-day flow according to the different climate scenarios. The magnitude of changes within different subregions of the basin varies considerably, with the most severe mean annual changes ranging from -30% to +40%. However, common to all of the scenarios evaluated is a general trend of reduced river flow from the south of the Baltic Basin together with increased river flow from the north.  相似文献   

4.
The cyanobacterial hepatotoxin nodularin is abundantly produced by the cyanobacterium Nodularia spumigena in the Baltic Sea during July-August. Nodularin is a potent hepatotoxin and a tumour promoter, distributed in various Baltic Sea environmental compartments, especially food webs involving mussels. Flounders receive nodularin through consumption of blue mussels. In this study nodularin concentrations in individual flounders (liver) were examined between July and September 2002 (six sample sets, four to 10 samples/set), providing information about contribution of sampling on estimates of bioaccumulation intensity. Toxin was determined using liquid chromatography/mass spectrometry (LC/MS) and enzyme-linked immunosorbent assay (ELISA). Additionally, liver histopathology was examined. Observed toxin concentrations were ND-390 microg kg(-1) dw (LC/MS) and 20-2230 microg kg(-1) dw (ELISA), with maximum concentrations in September (ELISA). The ELISA protocol generally resulted in higher, up to approximately 10-fold, toxin concentrations than LC/MS, with increasing difference toward September. This difference may have originated from different extraction solvents in LC/MS and ELISA, ion suppression in LC/MS, and temporal increase in nodularin metabolites detectable with ELISA. The differences in toxin concentrations between individual liver samples were considerable with relative standard deviation values of 20-154% (LC/MS) and 28-106% (ELISA). Since the precision of the ELISA method employed was <25% and that of LC/MS <10%, it can be concluded that the largest source of error in bioaccumulation estimates may be an inadequate number of samples. Although there were tissue lesions in several liver samples, occurrence of lesions was not related to toxin concentrations.  相似文献   

5.
This seven-year survey was primarily targeted to quantification of production of nodularin-R (NOD-R), a cyclic pentapeptide hepatotoxin, in Baltic Sea cyanobacteria waterblooms. Additionally, NOD-R and microcystin-LR (MC-LR; a cyclic heptapeptide toxin) sedimentation rates and NOD-R sediment storage were estimated. NOD-R production (70-2450 μg m−3; ∼1 kg km−2 per season) and sedimentation rates (particles; 0.03-5.7 μg m−2 d−1; ∼0.3 kg km−2 per season) were highly variable over space and time. Cell numbers of Nodularia spumigena did not correlate with NOD-R quantities. Dissolved NOD-R comprised 57-100% of total NOD-R in the predominantly senescent, low-intensity phytoplankton blooms and seston. Unprecedentedly intensive MC-LR sedimentation (0.56 μg m−2 d−1) occurred in 2004. Hepatotoxin sedimentation rates highly exceeded those of anthropogenic xenobiotics. NOD-R storage in surficial sediments was 0.4-20 μg kg−1 (∼0.1 kg km−2). Loss of NOD-R within the chain consisting of phytoplankton, seston and soft sediments seemed very effective.  相似文献   

6.
The concentrations and fluxes of polychlorinated naphthalenes (PCNs) were measured in surface sediments, and settling particulate matter collected in sediment traps, at two coastal and two offshore sampling stations in the Gulf of Bothnia, northern Baltic Sea, Sweden. The PCN concentrations (of tetra- to hepta-chloro congeners) in the surface sediments ranged from 0.27 to 2.8 ng/g dry weight and were of the same order of magnitude as background concentrations reported previously in Europe. The PCN fluxes in the southern basin (0.93 and 0.86 microg/m2/year) of the Gulf of Bothnia were higher than those in the northern basin (0.58 and 0.49 microg/m2/year); they were also higher near the coast than in the open sea. These PCN fluxes are similar to the pre-industrial levels determined from lake sediments in northwest England. The PCN homologue distribution changed from a relatively even distribution in samples collected near the coast, to TeCNs dominating in the samples from the open sea. This indicates that higher chlorinated PCNs are deposited and retained in sediments to a higher degree near the coast. The total annual deposition of PCNs in sediments in the Gulf of Bothnia was estimated to be 91 kg/year.  相似文献   

7.
Eutrophication is an ongoing process in most parts of the Baltic Sea. This article reports on the changes during recent decades of several eutrophication-related variables in the open sea areas surrounding Finland (wintertime nutrient concentrations, wintertime nutrient ratios, and summer time chlorophyll alpha concentrations at the surface). The sum of nitrate- and nitrite-nitrogen ([NO3+NO2]-N) was observed to increase nearly fourfold in the Northern Baltic Proper and the Gulf of Finland and almost double in the Bothnian Sea from the 1960s until the 1980s or 1990s. The increase was followed by a decrease, which was modest in the two former subregions. Phosphate-phosphorus (PO4-P) concentrations followed a similar pattern in the Northern Baltic Proper (threefold increase and subsequent slight decrease) and Bothnian Sea (30% increase and subsequent decrease), but increased throughout the study in the Gulf of Finland, with the present concentration being threefold to the measurements made in the early 1970s. The PO4-P concentration decreased throughout the study in the Bothnian Bay. Silicate-silicon (SiO4-Si) concentrations decreased 30-50% from the early 1970s to the late 1990s and increased 20-40% thereafter in the Northern Baltic Proper, the Gulf of Finland, and the Bothnian Sea. Chlorophyll alpha showed an increase of over 150% in the Northern Baltic Proper and the Gulf of Finland from the 1970s until the early 2000s. In the Bothnian Sea the chlorophyll alpha concentration increased more than 180% from the late 1970s until the late 1990s, and decreased thereafter. According to these long-term observations, the Gulf of Finland and Northern Baltic Proper show clear signs of eutrophication, which may be emphasized by hydrographical changes affecting the phytoplankton communities and thus the algal biomass.  相似文献   

8.
This paper compiles biological and chemical sea-ice data from three areas of the Baltic Sea: the Bothnian Bay (Hailuoto, Finland), the Bothnian Sea (Norrby, Sweden), and the Gulf of Finland (Tv?rminne, Finland). The data consist mainly of field measurements and experiments conducted during the BIREME project from 2003 to 2006, supplemented with relevant published data. Our main focus was to analyze whether the biological activity in Baltic Sea sea-ice shows clear regional variability. Sea-ice in the Bothnian Bay has low chlorophyll a concentrations, and the bacterial turnover rates are low. However, we have sampled mainly land-fast level first-year sea-ice and apparently missed the most active biological system, which may reside in deformed ice (such as ice ridges). Our limited data set shows high concentrations of algae in keel blocks and keel block interstitial water under the consolidated layer of the pressure ridges in the northernmost part of the Baltic Sea. In land-fast level sea-ice in the Bothnian Sea and the Gulf of Finland, the lowermost layer appears to be the center of biological activity, though elevated biomasses can also be found occasionally in the top and interior parts of the ice. Ice algae are light limited during periods of snow cover, and phosphate is generally the limiting nutrient for ice bottom algae. Bacterial growth is evidently controlled by the production of labile dissolved organic matter by algae because low growth rates were recorded in the Bothnian Bay with high concentrations of allochthonous dissolved organic matter. Bacterial communities in the Bothnian Sea and the Gulf of Finland show high turnover rates, and activities comparable with those of open water communities during plankton blooms, which implies that sea-ice bacterial communities have high capacity to process matter during the winter period.  相似文献   

9.
Baltic Sea populations of the northern pike (Esox lucius) have declined since the 1990s, and they face additional challenges due to ongoing climate change. Pike in the Baltic Sea spawn either in coastal bays or in freshwater streams and wetlands. Pike recruited in freshwater have been found to make up about 50 % of coastal pike stocks and to show natal homing, thus limiting gene flow among closely located spawning sites. Due to natal homing, sub-populations appear to be locally adapted to their freshwater recruitment environments. Management actions should therefore not involve mixing of individuals originating from different sub-populations. We offer two suggestions complying with this advice: (i) productivity of extant freshwater spawning populations can be boosted by modifying wetlands such that they promote spawning and recruitment; and (ii) new sub-populations that spawn in brackish water can potentially be created by transferring fry and imprinting them on seemingly suitable spawning environments.  相似文献   

10.
Long-range atmospheric transport is a major pathway for delivering persistent organic pollutants to the oceans. Atmospheric deposition and volatilization of chlorinated pesticides and algae-produced bromoanisoles (BAs) were estimated for Bothnian Bay, northern Baltic Sea, based on air and water concentrations measured in 2011–2012. Pesticide fluxes were estimated using monthly air and water temperatures and assuming 4 months ice cover when no exchange occurs. Fluxes were predicted to increase by about 50 % under a 2069–2099 prediction scenario of higher temperatures and no ice. Total atmospheric loadings to Bothnian Bay and its catchment were derived from air–sea gas exchange and “bulk” (precipitation + dry particle) deposition, resulting in net gains of 53 and 46 kg year?1 for endosulfans and hexachlorocyclohexanes, respectively, and net loss of 10 kg year?1 for chlordanes. Volatilization of BAs releases bromine to the atmosphere and may limit their residence time in Bothnian Bay. This initial study provides baseline information for future investigations of climate change on biogeochemical cycles in the northern Baltic Sea and its catchment.  相似文献   

11.
Contents of Cd and Zn in the blue mussel, Mytilus edulis, collected on the coast of the southern Bothnian Sea and the northern Baltic proper, were determined using flame AAS. The observed concentrations ranged from 4.7 to 10.8 mg kg(-1) dw for Cd and from 121 to 215 mg kg(-1) dw for Zn. The Zn/Cd ratio was around 20 at a majority of the investigated locations. Cd exhibited an approximate two-fold gradual increase from south to north in the study area. It is likely that this increase was due largely to enhanced bioavailability for Cd at lower salinity. However, it is not possible to eliminate the influence from a generally elevated overall concentration of cadmium in the southern Bothnian Sea caused by natural and anthropogenic input. Compared to mussels from marine waters on the west coast of Sweden, Cd concentrations were 5-10 times higher, similarity indicating an influence of low salinity. Zn did not show these salinity correlated differences. The high Zn content found south of the outlet of the river Dal?lven and gradually decreasing southwards was possibly caused by the high riverine input.  相似文献   

12.
Organohalogen contaminants were investigated in Baltic herring caught from three catchment areas in the Baltic Sea, off the coasts of Finland. Pools of both small and large herring were analysed for polychlorinated biphenyls (PCB), dibenzo-p-dioxins, dibenzofurans, naphthalenes, camphenes (toxaphene), polybrominated diphenyl ethers and the pesticide DDT and its metabolites. PCB concentrations per fresh weight in small herring were at the same level in all catchment areas, i.e. the Bothnian Bay, the Bothnian Sea and the Gulf of Finland, revealing no hot spots and reflecting most likely long term emissions and atmospheric deposition. Differences in the levels and/or congener profiles of other contaminants between catchment areas may be explained by point sources. Similar concentrations in small and large herring in the Gulf of Finland were possibly due to their common nutrition. In the other areas, differences between small and large herring most likely reflected their different food sources.  相似文献   

13.
The Baltic Sea Action Plan (BSAP) requires tools to simulate effects and costs of various nutrient abatement strategies. Hierarchically connected databases and models of the entire catchment have been created to allow decision makers to view scenarios via the decision support system NEST. Increased intensity in agriculture in transient countries would result in increased nutrient loads to the Baltic Sea, particularly from Poland, the Baltic States, and Russia. Nutrient retentions are high, which means that the nutrient reduction goals of 135 000 tons N and 15 000 tons P, as formulated in the BSAP from 2007, correspond to a reduction in nutrient loadings to watersheds by 675 000 tons N and 158 000 tons P. A cost-minimization model was used to allocate nutrient reductions to measures and countries where the costs for reducing loads are low. The minimum annual cost to meet BSAP basin targets is estimated to 4.7 billion €.  相似文献   

14.
This paper explains the transition and selection of environmental regimes, from the general framework of the regime in question, its evolution over time, and primary national approaches to the regime. We evaluate the significance of the environmental problems covered by the international regime for the countries concerned and the importance of problem-solving at the international level, and we assess national interests and approaches towards problem-solving and participation in the regime, especially their dynamics and changes in the period of transition.  相似文献   

15.
Arsenic occurs as a persistent constituent in many of the chemical weapons dumped into the Baltic Sea; it can be used as an indicator of leakage and dispersal of released munitions to the marine environment. Total arsenic was analysed in sediment samples taken from the Lithuanian economic zone in the Baltic Sea, which included samples from the chemical munitions dumpsite in the Gotland Basin and national monitoring stations in the southeastern Baltic Sea. Arsenic concentrations in sediments ranged from 1.1 to 19.0 mg kg(-1), with an average of 3.4 mg kg(-1). Although there was evidence of slightly elevated arsenic content in sediments near the weapons dumpsite, arsenic concentrations were nevertheless quite low relative to other investigations in the Baltic and North Seas.  相似文献   

16.
Laboratory studies suggest that the cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) will persist in the aquatic environment and bioaccumulate in fish. Here these cVMS were measured in herring collected in the Swedish waters of the Baltic Sea and the North Sea and in grey seals from the Baltic Proper. D4, D5, and D6 were present in herring muscle at concentrations around 10, 200, and 40 ng g−1 lipid weight, respectively. The ratio of these concentrations was similar to the relative magnitude of estimated emissions to water, suggesting that the efficiency of overall transfer through the environment and food web was similar (within a factor 2–3) for the three chemicals. The concentrations of D5 and D6 were similar in herring caught in the highly populated Baltic Proper and in the less populated Bothnian Sea and Bothnian Bay. The D4 concentrations were lower at the most remote northern station, suggesting that D4 is less persistent than D5 and D6. Herring from the North Sea had lower levels of all three chemicals. The concentrations of D4, D5 and D6 in grey seal blubber were lower than the lipid normalized concentrations in herring, indicating that they do not biomagnify in grey seals.  相似文献   

17.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

18.
Ambio - The coastal zone of the Baltic Sea is diverse with strong regional differences in the physico-chemical setting. This diversity is also reflected in the importance of different...  相似文献   

19.
Dippner JW  Kornilovs G  Junker K 《Ambio》2012,41(7):699-708
Since 2001/2002, the correlation between North Atlantic Oscillation index and biological variables in the North Sea and Baltic Sea fails, which might be addressed to a global climate regime shift. To understand inter-annual and inter-decadal variability in environmental variables, a new multivariate index for the Baltic Sea is developed and presented here. The multivariate Baltic Sea Environmental (BSE) index is defined as the 1st principal component score of four z-transformed time series: the Arctic Oscillation index, the salinity between 120 and 200 m in the Gotland Sea, the integrated river runoff of all rivers draining into the Baltic Sea, and the relative vorticity of geostrophic wind over the Baltic Sea area. A statistical downscaling technique has been applied to project different climate indices to the sea surface temperature in the Gotland, to the Landsort gauge, and the sea ice extent. The new BSE index shows a better performance than all other climate indices and is equivalent to the Chen index for physical properties. An application of the new index to zooplankton time series from the central Baltic Sea (Latvian EEZ) shows an excellent skill in potential predictability of environmental time series.  相似文献   

20.
Concentrations of Cd and ten other metals (Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn) were determined in the brown seaweed Fucus vesiculosus L. and the aquatic moss, Fontinalis dalecarlica Br. Eur. from the northern Baltic Sea and the southern Bothnian Sea. Elevated concentrations of metals were found in samples taken close to densely populated areas, such as Stockholm and Nyn?shamn. Very high concentrations of especially Zn were found in both Fucus and Fontinalis samples taken from the area south of the Gulf of G?vle. The results indicate that mining and industrial activities along the river Dal?lven are the main sources of Zn and several other metals. Cd concentrations in Fucus plants reached maximum values (24.5 mg kg(-1)) at the northern site. The gradual increase of Cd concentrations in Fucus plants northward could not be totally explained by the salinity gradient in the Baltic Sea; reasons for this are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号