首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
主要介绍了锶同位素的基本地球化学性质,系统阐述了锶同位素在示踪地下水迁移转化、水-岩相互作用、污染物来源、河流离子来源等方面的应用与进展。利用锶同位素比值可以了解地下水的来源、水化学组成、流经地区岩石的组成等情况,而河流中锶同位素的来源主要分为矿物风化输入、大气输入等,利用质量守恒定律结合锶同位素比值,能够示踪河流中污染来源以及生态系统中营养元素的循环。  相似文献   

2.
地下水“三氮”污染来源及其识别方法研究进展   总被引:5,自引:2,他引:3  
杜新强  方敏  冶雪艳 《环境科学》2018,39(11):5266-5275
地下水"三氮"污染来源的识别研究对污染控制与修复有重要的意义.在阐述地下水"三氮"污染来源(大气氮沉降、土壤天然有机氮矿化、地表径流氮输入、人类活动氮排放等)及其在我国的分布特征的基础上,总结了国际上常用的"三氮"污染来源识别方法,包括水化学方法、统计学相关方法、区域氮平衡法、稳定同位素示踪法及一些新型示踪方法.指出由于"三氮"污染来源的多样性及污染形成机制的复杂性,单一识别方法在应用中均有较明显的局限性,目前主流识别手段为稳定同位素示踪法与多种识别方法相综合.进一步提出要加强新型示踪方法的开拓、定量识别方法的优化,污染源识别与迁移转化机制、地下水补排条件、地下水-地表水转化关系等研究相结合为未来发展的主要趋势.  相似文献   

3.
张雅  苏春利  马燕华  刘伟江 《环境科学》2019,40(6):2667-2674
济南东源水源地属于岩溶裂隙水,是济南市的主要供水水源.以济南市东源水源地为研究区,通过对研究区地下水和地表水的主要离子含量、氢氧同位素比值分析,揭示了东源饮用水源地地下水的补给来源、地表水的影响及水岩作用过程.结果表明,区内地下水水化学类型相似,阳离子以Ca~(2+)为主,阴离子以HCO_3~-和SO_4~(2-)离子为主;大气降水是该地区地下水和河水的主要补给来源,且经历了不同程度的蒸发作用.地下水化学组分主要受水-岩作用的控制,方解石和石膏等贫镁矿物的溶解沉淀以及上覆第四系地层硅酸盐矿物的水解是区内地下水水化学组分的主要来源;部分地段河水污染渗漏补给地下水,造成地下水污染,主要超标指标为总硬度、NO_3~-、NH_4~+、SO_4~(2-)、Fe和Mn.  相似文献   

4.
北京凉水河流域的同位素和水化学特征分析表明:1)地下水水质在100m以浅相对较差,但到2017年为止,水质保持稳定.2)浅层地下水与平原区河水同位素相对富集,且落在同一条蒸发线上;但整体上河水与浅层地下水水化学类型不同,据此推断山前冲洪积扇河水入渗是区域地下水补给的重要来源,下游地下水主要受到侧向径流影响.3)同位素平...  相似文献   

5.
采用环境同位素和水化学方法,通过分析南太行山山前平原不同类型水体氢氧稳定同位素(δD和δ18O)、溶解性无机碳同位素(δ~(13)C-DIC)和水化学组成特征,探讨不同水体来源以及人类活动对地下水水质的影响过程。研究区地下水氢氧同位素组成表明,区内地下水均来自大气降水,补给区和排泄区浅部含水层地下水较深部含水层地下水氢、氧同位素值均偏正,氘盈余值(d值)也偏小,显示浅部含水层地下水受蒸发作用影响。同时排泄区地下水氢、氧同位素值较补给区地下水偏正,显示排泄区地下水经历较明显的蒸发过程。研究区地下水溶解性无机碳碳同位素(δ~(13)C-DIC)组成表明,补给区和排泄区浅部含水层地下水δ~(13)C-DIC值较深部含水层δ~(13)C-DIC值均偏负,显示浅部含水层地下水无机碳更多来源于有机物分解。同时排泄区地下水δ~(13)C-DIC值较补给区地下水δ~(13)C-DIC值偏负,表明排泄区地下水溶解性无机碳受有机物分解影响较大。研究区地下水水化学组成表明,补给区地下水水化学类型以Ca-HCO3型为主,排泄区地下水水化学类型以Na-HCO3-SO4型为主。结合同位素组成特征,补给区地下水水化学组成主要受溶滤作用和人类活动的影响,排泄区地下水水化学组成则受溶滤作用、蒸发浓缩作用、阳离子交换作用和人类活动的共同控制。  相似文献   

6.
青海湖流域浅层地下水补给来源及其水位变化   总被引:2,自引:0,他引:2       下载免费PDF全文
地下水补给来源及水位变化是干旱– 半干旱地区生态和植被的主要制约要素之一,也是 开展流域生态和环境治理技术与试验示范的关键。通过青海湖流域2000 年8 月和2009 年8 月浅 层地下水埋深的调查,以及地下水、河水和雨水氢氧同位素分析,揭示了青海湖流域浅层地下水 埋深的基本状况,明确了大气降水是青海湖流域浅层地下水的主要补给来源,其水位变化受居民 用水量的影响外,主要与降水量、地形密切相关。  相似文献   

7.
为探寻西苕溪地表、地下水体的来源和补排关系,对西苕溪流域丰水期和平水期的地表、地下水进行了氢氧同位素(δD和δ18O)组成分析,并结合水体的水化学参数,推断其来源和补排关系。结果表明:西苕溪流域地表、地下水体主要接受降雨补给,在上游山区中的泉水运移过程较为缓慢,上游地表水与地下水补排关系不明显;中游丘陵地区地表、地下水体相互联系紧密,具体补排关系为3号、4号、6号样点处地表水接受地下水补给,其余样点处为地表水补给地下水;下游农田密集区地下水接受河水补给较少。  相似文献   

8.
选取鄱阳湖典型洪泛湿地为研究对象,分析了2018年4~10月降水、湖水、河水和湿地地下水的氢氧同位素变化特征,利用δ18O~δD关系确定了不同水文时期湿地各类水体的转化关系,并结合同位素端元混合模型估算了不同水源对湿地地下水的贡献分量.结果表明,研究区降雨δ18O和δD值在6~7月份偏小,其余月份较高,存在明显季节变化和雨量效应.河水、湖水同位素与降水同位素的季节变化规律基本一致,但受蒸发分馏影响,重同位素更为富集,且变化幅度远小于降水同位素.湿地地下水同位素的季节变化较小,δ18O、δD均值(-5.26‰,-31.1‰)高于大气降水(-6.32‰,-40.1‰)、低于湖水(-3.60‰,-26.4‰),与河水同位素(-5.09‰,-34.4‰)较为接近,表明湿地地下水受降水、湖水和河水的共同影响.涨水期(4~5月)河水的补给源为降雨和流域内地下径流,湖水主要受河水和降水共同补给,湿地地下水主要受前期降水和河水补给的滞后影响,河水的贡献比重更大.丰水期(6~8月)地下水主要接受湖水和河水共同补给,湖水的补给贡献比例超过50%,退水期(9~10月)湿地地下水向河道和湖泊等地表水体排泄.  相似文献   

9.
海南岛北部剥蚀平原区浅层地下水是区域内重要的供水来源,同时作为区域地下水重要的补给区和径流区,对整个琼北地区地下水水化学特征的形成与演化具有重要意义.以龙门地区浅层地下水为研究对象,结合水文地质条件并应用多元统计、水化学和同位素地球化学分析方法,对影响该地区浅层地下水水化学特征的主要控制因素和演化过程进行了分析.结果表...  相似文献   

10.
何锦  张怀胜  蔡五田  王雨山 《环境科学》2023,44(8):4314-4324
为了解衡水市桃城区浅层咸水特征及成因,通过分析典型钻孔易溶盐以及浅层地下水(井深≤100 m)的水化学及氢氧稳定同位素数据,对浅层地下水补给来源和咸化过程进行了研究.结果表明:研究区浅层地下水为弱碱性咸水,TDS变化范围176.06~17 569.65 mg·L-1,钻孔全盐量为1.830~6.509 g·kg-1,易溶盐水化学与浅层水化学类型相似,均为SO4·Cl-Na·Mg型和Cl·SO4-Na·Ca型.不同时期的大气降水是浅层地下水的主要补给来源.地下水中盐分主要来源于岩盐及硫酸盐矿物的溶解;同时蒸发作用和还原环境对于地下水盐分的积累也有一定贡献,但地下水咸化过程受到人类活动及海水入侵的影响较小.  相似文献   

11.
基于长江源区冬克玛底流域2017年6~9月采集的84个地下水样品,分析了地下水稳定同位素特征及其影响因素,讨论了地下水的补给来源.结果表明,研究区多年冻土区地下水δ18O的变化范围为-15. 3‰~-12. 5‰,平均值为-14. 0‰;δD的变化范围为-108. 9‰~-91. 7‰,平均值为-100. 2‰,与当地大气降水相比,地下水较为富集重同位素;地下水线(LG)的斜率和截距均低于全球和局地大气降水线(GMWL和LMWL),表明地下水在接受降水的补给后经历了不同程度的蒸发作用;地下水氘盈余(d-excess)变化范围为4. 9‰~25. 0‰,平均值为11. 6‰,低于大气降水平均氘盈余值;地下水同位素与降水量存在显著的负相关关系,表明大气降水对地下水具有重要的补给作用;不同时期影响地下水同位素的组成和变化因素有所不同,在冻土的冻融前期(气温上升阶段),由于冻土活动层较薄,地下水受气温影响显著.虽然后期气温降低,但冻土活动层厚度依然在增加,此时地下水在土壤中滞留的时间的增加是地下水同位素富集的一个重要因素.结合流域的地形特点、地下水同位素特征及其影响因素,...  相似文献   

12.
多种方法识别青岛大沽河平原区地下水硝酸盐污染来源   总被引:8,自引:1,他引:7  
硝酸盐是地下水中最常见的一种污染物,其来源的确定对于硝酸盐污染的治理非常重要.大沽河是山东半岛主要河流之一,其地下水含水层是重要的饮用水来源,但近年硝酸盐含量普遍很高,除了少数位置外,都超过了中华人民共和国国家标准,有必要对其污染来源进行研究.采用N同位素、N-O同位素和卤化物比率3种方法综合确定了硝酸盐污染来源.研究发现:该区地下水的N同位素比率值表明76%的取样点的硝酸盐来源与粪肥、污水、大气沉降、化肥和土壤N有关;氮氧同位素的结果显示80%的硝酸盐污染源为粪便或污水;卤化物比率也证明了这一来源.这和该区蔬菜生产大量施用粪肥和化肥进行农业种植是一致的,两者的混合施用使同位素比率和卤化物比率偏高,硝酸盐的主要污染来源是化肥和粪肥.多种方法相结合能够更准确地确定地下水硝酸盐的污染来源.  相似文献   

13.
选择密云水库上游承德市滦平盆地为研究区,通过不同土地利用类型地下水"三氮"含量、土壤全氮含量和包气带可溶硝态氮含量,结合水体硝酸盐氮氧双同位素、硫酸盐硫氧双同位素多种环境同位素特征和地下水放射性碳同位素测年示踪硝酸盐来源.结果表明,滦平盆地水体氮形态以硝态氮为主,地下水NO3-质量浓度与居民用地、旱地土地利用类型显著相关,硝酸盐污染主要集中于居民建设用地和农用地区域浅层地下水中.13.79%地下水样品NO3-质量浓度超过国标(GB/T 14848-2017)地下水硝酸盐限值Ⅲ类标准,超标范围为1.04~3.86倍;37.93%地下水样品NO3-质量浓度超WHO饮用水硝酸盐浓度限值,超标范围为1.08~6.83倍.地下水NO3-质量浓度、土壤全氮和浅层土壤可溶硝态氮空间变异受结构性因素和人为因素共同作用影响.地下水硝酸盐来源主要为家畜粪尿和生活污水混合污染,其次为化学肥料淋滤;盆地山前地下水径流区包气带-地下水氮循环主导过程为硝化作用.以盆地系统作为独立单元研究水环境硝酸盐污染来源和归趋规律,对流域整体地下水污染防治和修复具有重要意义.  相似文献   

14.
基于氚和CFCs的三江平原浅层地下水更新能力估算   总被引:3,自引:0,他引:3  
论文通过对三江平原浅层地下水年龄的测定,研究了地下水的来源与更新能力。在井深小于60 m的钻孔中,采集了11 组浅层地下水样,分别测定水中放射性同位素氚(T)和氟利昂(CFCs),根据活塞模型,分别计算出浅层地下水的年龄。分析结果表明,三江平原浅层地下水中氚同位素含量为1.7~61.2 TU;CFC-12 和CFC-113 浓度分别是0.04~1.25 pmol·kg-1 和0.1~0.71 pmol·kg-1。根据氚同位素含量估算的浅层地下水年龄范围是39~51 a;CFC-12 浓度估算的浅层地下水年龄范围为38.2~61.7 a。两种测年数据都表明,浅层地下水缺失了0~39 a 的年轻水,这暗示三江平原的地下水主要接受外源水的补给,深循环地下水越流补给地表水并形成湿地,最终补给到河流之中,地下水有稳定的补给源,可以适当地进行开发和利用。  相似文献   

15.
通过采集闪电河流域2020年2月至2022年2月的降水与2021年的丰(8月)和枯(10月)水期的地表水和地下水,运用稳定同位素技术,对流域“三水”的氢氧稳定同位素进行时空变化分析,探讨水体同位素与环境因子的关系,结合HYSPLIT模型追踪大气水汽来源,利用端元混合模型揭示水体转换关系.结果发现,当地降水线的斜率和截距均小于当地大气降水线,水汽主要来自西风水汽、极地气团和东亚季风环流,降水同位素有显著的温度效应;时间上,地表水与地下水同位素在季节变化上均表现出枯水期较丰水期更富集,地表水与地下水d-excess值均低于全球平均值,显现出当地强烈的蒸发作用;空间上,地表水δ18O值丰枯季节在空间上具有相同的变化特征,呈现上游至下游逐渐富集,地下水δ18O高值区空间分布不均,地下水δ18O值随埋深的增加更加贫化;地下水水线斜率最高在丰水期为7.87,与当地大气降水线和地表水水线斜率十分接近,表明丰水期“三水”存在复杂的水力联系.研究区在丰水期地表水主要接受降水的补给,其次是接受地下水的径流补给.研究结果有助于明确闪电河流域同...  相似文献   

16.
钱建平  李伟  张力  张昆  王硕  李森 《地球与环境》2018,46(6):613-620
查明重金属污染来源是地下水重金属污染防治的前提。近年来随着我国城市化进程的加快和工业的迅猛发展,我国地下水重金属污染也呈现日益严重的趋势。地下水重金属污染来源可分为自然来源和人为来源。地下水重金属污染的来源主要是人为来源,主要包括工业生产、再生水灌溉和生活污染来源。地下水重金属的工业污染主要位于重金属矿山和工业城市附近,其特点是污染元素种类多、浓度高,一般生产历史越长,重金属污染越严重。再生水重金属污染主要位于北方缺水区,运用再生水灌溉首先应该对再生水的重金属污染进行评价。生活来源的重金属污染对地下水正施加着愈来愈重要的影响,当前城市垃圾渗滤液正在成为地下水重金属污染的新源头。根据地下水重金属污染的空间分布、含水层对比、主成分分析、稳定同位素示踪及多元混合模型多种方法手段综合分析,客观准确地判断地下水重金属污染的来源及比例,制定科学合理地下水重金属污染的治理方案,以达到最佳的治理效果。  相似文献   

17.
农业活动干扰下地下水无机碳循环过程研究   总被引:2,自引:0,他引:2  
为准确识别浅层地下水污染来源及污染过程,选择我国北方某集约化蔬菜种植基地浅层地下水作为研究对象,借助水化学组成、氢氧同位素以及溶解性无机碳(DIC)碳同位素组成,探讨浅层地下水来源以及DIC来源和迁移转化特征.结果表明:浅层地下水阳离子以Ca2+和Mg2+为主,阴离子以HCO3-和SO42-为主,沿地下水流向,水化学类型由HCO3?-Ca2+-Mg2+型转变为HCO3--SO42--Mg2+-Ca2+型;浅层地下水δD组成范围为-69.6‰~-52.7‰,均值为-63.5‰,δ18O组成范围为-9.29‰~-6.80‰,均值为-8.45‰.大气降水是浅层地下水重要补给来源,靠近河水的浅层地下水还接受地表水的补给;浅层地下水δ13CDIC组成范围为-11.76‰~-5.85‰,均值为-10.43‰.浅层地下水DIC来源包括土壤CO2、碳酸盐矿物以及有机质分解.河水DIC侧渗对局部浅层地下水DIC碳同位素造成影响,化学肥料引起的酸性物质参与碳酸盐矿物风化作用以及浅层地下水CO2去气作用对地下水δ13CDIC组成产生影响,在利用DIC碳同位素识别地下水污染来源时需要引起重视.  相似文献   

18.
我国地下水中硝酸盐污染问题严峻,尤其农业产区地下水硝酸盐污染日益突出,严重影响了地下饮用水安全,急需引起重视.通过综述发现,我国地下水中硝酸盐的主要来源为大气沉降、土壤氮、农业施肥和粪便污水等,其中粪便污水和农业施肥是地下水硝酸盐超标的主要原因.总结了水化学分析法、多元统计分析法、稳定同位素示踪法和微生物源追踪等技术在地下水硝酸盐溯源中的应用.各种溯源方法均有一定的局限性,建议采用多种方法联合识别地下水中硝酸盐来源,并通过多元统计分析和同位素定量解析模型计算不同污染来源贡献率.硝酸盐污染溯源经历了从定性到定量的研究过程,目前基于δ15N-NO3 -δ18O-NO3 -解析硝酸盐来源的SIAR和MixSIAR模型已经相当成熟,但由于不同输入端元同位素特征值范围相互重叠,不同时空变化等条件下δ15N-NO3 -δ18O-NO3 -值具有一定差异,以及氮迁移转化过程中的同位素分馏等的影响,导致模型计算得出的结果还存在不确定性,需要进一步优化模型的解析方法,以更精准地获取硝酸盐污染来源及其贡献率,服务于地下水资源的科学管理.  相似文献   

19.
为研究武汉地下水水化学特征及形成原因,以长江新城为研究区,于2019年7-9月采集地表水和地下水样品,对区内地下水和地表水进行测试分析.基于水化学结果,运用数理统计、离子比值分析、矿物饱和指数等方法,揭示了长江新城的水化学演化过程和主要离子来源.结果表明,区内地下水阳离子以Ca2+为主,阴离子以HCO3-为主,地下水和地表水的补给来源密切相关.地下水主要受岩石风化作用控制,同时还受一定程度的蒸发浓缩作用影响,主要离子来源受碳酸盐岩溶解沉淀控制,也存在硅酸盐岩和蒸发盐岩风化溶解作用的影响.地下水受生活污水和农业肥料施用影响较大.  相似文献   

20.
新疆喀什三角洲地下水SO2-4化学特征及来源   总被引:1,自引:3,他引:1       下载免费PDF全文
魏兴  周金龙  乃尉华  曾妍妍  范薇  李斌 《环境科学》2019,40(8):3550-3558
"水质型"缺水问题是新疆喀什地区水资源紧缺的主要原因之一.位于喀什地区西部的喀什三角洲面积13 329 km~2,73. 2%面积的潜水和53. 2%面积的承压水SO_4~(2-)浓度超过地下水质量Ⅲ类标准,同时伴随有高TDS、高硬度等特征.运用δD、δ~(18)O-H_2O和δ~(34)S-SO_4~(2-)同位素等手段分析地下水SO_4~(2-)化学特征及来源.结果表明:①区内剥蚀山区钙质粉砂岩、钙质细砂岩和石膏等盐类矿物的溶解控制了流域水化学组成,形成了水化学类型以SO_4型为主的地表水和地下水.地下水化学类型演变方向为HCO_3·SO_4→SO_4→SO_4·Cl,山麓斜坡冲洪积砾质平原为溶滤-径流带,河流冲积平原为径流-累积带,上游至下游地下水化学成分趋向盐化;②区内地下水初始补给源主要为大气降水,且受一定蒸发作用影响.不同水文地质单元地下水δD和δ~(18)O分布特征明显,上游至下游,同位素值由低到富集,受蒸发作用由弱到强;冲积平原承压水同位素分布较离散,受到上覆潜水混合作用影响;③南部、北部山麓斜坡冲洪积砾质平原潜水SO_4~(2-)来源分别为海陆交互相和陆相蒸发岩的溶滤;河流冲积平原潜水SO_4~(2-)除了陆相蒸发岩溶滤来源外,还存在化肥淋滤的污染;承压水受蒸发岩溶滤外,还受到潜水的混合作用和细菌还原硫酸盐作用影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号