首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用湖北省超级站2019年10~11月的臭氧、NOx(=NO+NO2)和102种VOCs物质的小时数据分析了军运会期间臭氧污染变化;基于DSMACC箱型模式模拟不同VOCs和NOx浓度下臭氧的光化学生成敏感性;采用PMF模型对前体物VOCs进行源解析,并估算不同源类的臭氧生成潜势.结果显示,军运会保障前臭氧日最大8小时浓度(最大MDA8:219.51μg/m3)超过国家二级标准,保障期臭氧MDA8浓度(135.11μg/m3)明显下降,保障后浓度回升(140.98μg/m3).军运会保障前中期臭氧浓度的差异受气象条件影响更明显,而保障后臭氧浓度的上升主要是因为前体物浓度的大幅增加.根据DSMACC模拟的EKMA曲线,武汉市军运会期间臭氧的光化学生成主要受VOCs浓度变化的影响.进一步对VOCs进行源解析,结果显示,保障前VOCs对臭氧生成贡献较大的源类是燃烧源、石油化工和机动车,分别占23.0%、22.8%和22.5%;保障期间VOCs的主要来源是机动车(38.4%)和燃烧源(25.5%);保障后则主要是石油化工(32.6%)和燃料挥发(25.7%).三个阶段对比发现,军运会的保障方案对石油化工源减排效果明显,但对机动车和燃烧源排放的限制效果并不显著.武汉市应该更注重对燃烧、燃料挥发和机动车排放的治理.  相似文献   

2.
为了研究G20峰会期间杭州市及其周边地区大气质量状况,评估保障措施的实施对空气质量的影响,利用2016年8月24日-2016年9月6日杭州及其周边城市空气质量监测数据,分析其时空分布特征,并与2015年同期数据进行比较.结果显示:(1)2016年8月24日-9月6日即会期保障阶段,杭州市PM_(2.5),PM_(10),SO_2,NO_2,CO和O_3浓度均值为31.52μg/m~3,46.55μg/m~3,8.92μg/m~3,15.22μg/m~3,0.62mg/m~3和113.98μg/m~3.(2)与2015年同期相比,会议保障阶段杭州市PM_(2.5),PM_(10),SO_2,NO_2和CO浓度分别下降了40.16%,37.71%,25.98%,56.30%和30.34%,O_3浓度则上升了19.89%.(3)2016年会期保障阶段,2015年同期和G20峰会举办期间的3个时段,污染物日变化特征相似,除O_3外,其他污染物整体上呈现2015年同期2016年会期保障阶段G20峰会举办期间的特点.(4)空间上而言,会期保障阶段O_3浓度在空间上表现出显著上升,其他污染物浓度同比有明显下降,其中PM_(2.5)和PM_(10)在空间上的差异较小,而SO_2和NO_2在空间上的差异较大.(5)G20峰会期间采取的保障措施确保了杭州市及其周边地区大气质量得到了改善.  相似文献   

3.
武汉市夏季大气挥发性有机物实时组成及来源   总被引:1,自引:1,他引:0  
利用在线监测仪器获取了武汉市2019年6~7月环境大气中102种挥发性有机物(VOCs)小时浓度数据.观测期间ρ(VOCs)范围为24.9~254μg·m-3,平均值为(67.7±32.2)μg·m-3.依据臭氧浓度标准,将观测期间划分为清洁日和污染日,对比分析清洁日和污染日气象条件、 VOCs浓度、组成、臭氧生成潜势和来源差异.污染日NOx、 CO和VOCs的平均值分别超出清洁日34.9%、 25.0%和27.8%.污染日烷烃、烯烃、芳香烃和含氧VOCs分别比清洁日高40.7%、 39.5%、 26.9%和21.5%.污染日总臭氧生成潜势为(102±69.6)μg·m-3,超出清洁天33.5%.污染日液化石油气燃烧、工业排放、机动车排放、天然源和溶剂使用的平均贡献率分别比清洁日低3.4%、 2.5%、 0.2%、 1.3%和1.4%,油气挥发源平均贡献率比清洁日高8.8%.机动车排放源和油气挥发源的日变化均呈现早晚高、午后低的特征,与早晚高峰排放有关;LPG燃烧的日变化与餐饮油烟排放变化一致.浓度...  相似文献   

4.
于2020年12月1日~2021年12月1日分别在深圳市大学城和路边站两点位对大气CO2和CO浓度进行了为期1a的观测.本次观测期间内两点位大气CO2平均浓度分别为432×10-6和439×10-6,均呈现了“秋冬季高、春夏季低”的季节变化特征与“昼低夜高”日变化特征,且日变化特征在早晚高峰期受到交通源排放的显著影响.此外,通过引入CO2和CO的净变化值得到大学城和路边站两点位的ΔCO2/ΔCO值分别为136.8~184.8、59.0~119.3,结果表明机动车排放对深圳市大气CO2贡献突出.  相似文献   

5.
2010年广州亚运期间空气质量与污染气象条件分析   总被引:9,自引:2,他引:7  
利用2010年11月4日~12月10日广州地区NO2、O3、SO2、PM、能见度实测资料,区域空气污染指数RAQI及大气输送扩散特征参数,分析广州亚运期间空气质量与气象条件变化特征.结果表明,亚运期间空气质量比亚运前后好,能见度比亚运前后大,PM1和PM2.5浓度比亚运前后小,能见度与PM1和PM2.5有较好的反相关;亚运期间NO2和SO2日均值和小时均值均达到国家一级标准,PM10日均值和O3小时均值均满足国家二级标准,污染物得到较好的控制;广州地区SO2受本地源和外地源远距离输送叠加影响,NO2受本地源影响较大;广州周边城市NO2、SO2和PM10有向广州输送的潜势,而广州O3有向其周边城市扩散的潜势;亚运期间污染气象条件比亚运前后有利,亚运期间污染物浓度降低得益于政府实施的减排措施及良好的气象条件.  相似文献   

6.
上海燃煤电厂空气污染日应急保障措施评估   总被引:1,自引:0,他引:1  
文章分析了4月30日8:00~5月1日18:00启动空气污染日应急保障措施期间本市燃煤电厂污染物排放状况,结合措施实行前后环境空气质量状况,对应急减排措施效果进行了初步评估,并探寻了固定源污染物排放量与环境空气污染物浓度水平关系。结果显示,本市应急减排措施效果明显;全市环境空气中PM10浓度与电厂烟尘、SO2排放量显著相关;应急减排措施实行后,脱硫电厂烟尘排放量有明显的下降,未脱硫电厂烟尘排放量则有所增加。  相似文献   

7.
研究采用KZ(Kolmogorov-Zurbenko)滤波统计方法,结合数值模型情景分析技术,以CO为示踪污染物,对2013年1月-2017年12月珠江三角洲重点城市气象条件与源减排对CO浓度的影响进行了评估分析,结果显示:监测期间珠三角地区CO平均浓度为0.91 mg/m3,珠江三角洲重点城市CO浓度日变化呈现双峰型分布,早上08∶00-10∶00出现第1个峰值,下午20∶00左右出现第2个峰值;季节变化上整体呈现出冬季>春、秋季>夏季的特征;空间分布上珠三角、粤北地区浓度较高,粤东、粤西地区浓度则较低。KZ滤波统计方法显示污染源减排措施对珠江三角洲地区不同城市CO浓度贡献占比在85.79%~103.79%之间;WRF-CMAQ数值模型情景分析结果显示污染源减排措施对珠江三角洲地区不同城市CO浓度贡献占比在79%~96%之间;综合表明源减排措施对2013–2017年北京市不同点位CO浓度的改善起着主导作用。  相似文献   

8.
为研究唐山城市上空CO2与CO浓度时空分布,进一步定量其碳排放,于2018年11月~2019年3月,利用运十二飞机搭载高精度温室气体分析仪和相关辅助设备,对唐山市上空(200m~4600m)CO2与CO浓度进行飞机探测.探测期间共取得6组CO2和CO浓度垂直廓线数据.结果表明:探测期间CO2浓度变化范围406×10-6~453×10-6,CO浓度变化范围27×10-9~1135×10-9.夜间探测有明显的混合层存在时,CO2与CO浓度分布在混合层内有向上聚集现象,且在混合层顶均达到最大值;白天探测无明显的混合层存在时,浓度整体随高度增加而减小.在探测期间整层的平均风力小于4级时,CO2和CO浓度极显著相关,CO2和CO浓度比变化范围32.2~43.9.以2019年2月23日白天的架次为案例进行分析,微风条件下空气团经过城市后,CO2和CO浓度均有所增加,显示当日唐山是CO2和CO的源,结合质量平衡法或大气反演模式可以进一步估算城市CO2和CO排放量.  相似文献   

9.
孙玉环  杨光春 《中国环境科学》2021,40(12):5531-5538
应用三维空气质量模型(Model-3/CMAQ)和积分过程速率(IPR)分析工具对2017年7月22~31日夏季4次台风持续影响下中山市7月首次出现的持续6d的O3污染事件进行了详细分析,识别了O3 8h浓度最大值时段主导的大气物理过程和大气化学过程,并计算了不同源、汇过程对本地O3浓度的贡献.研究结果表明,污染时段化学过程对O3的源贡献高于非污染时段,化学过程贡献增加,说明光化学反应过程更加活跃;台风带来的外来气团经过上风向高污染物排放区域时,化学过程贡献显著上升,与非经过高污染物排放区域相比,污染时段的化学过程对中山市O3源过程的浓度贡献高2.4%~6.5%;污染时段,水平输送对中山市大气O3源过程的浓度贡献在56.6%~92.6%之间.因此,污染期间强化本地排放源的管控,减少O3生成贡献的同时,结合区域气团路径分析,精准识别污染协同管控区域,上风向污染物高排放区域实施协同减排措施,实现区域联防联控.  相似文献   

10.
为研究2020年初新冠疫情严控措施对南京市空气质量的影响,选取1月25日~2月10日(疫情严控期)南京及周边省会城市空气质量监测数据,与5a同期数据进行对比,分析时空分布特征.结果表明,疫情停工期间,降水量同比下降,大气扩散条件为近5a较差水平,但除O3浓度不降反升外,其他主要污染物PM2.5、PM10、SO2、NO2和CO浓度均达近5a最低值,分别为36,44,5,22μg/m3和1.1mg/m3.通过推算疫情停工期间本地减排措施的“净环境效益”,严控使得PM2.5、PM10、SO2、NO2和CO分别下降了41.7%、45.3%、14.3%、43.5%、18.2%,O3浓度上升了4.8%.从空间上分析,南京市SO2浓度及其同比降幅在长三角省会城市内排名第1,其他污染物改善情况处于中等水平.从日变化可知,PM2.5和PM10日变化由双峰型变为单峰型,夜间未出现次峰值.O3夜间浓度明显升高,原因是交通源的大幅削减使NO对O3的滴定反应降低,而白天O3浓度峰值取决于VOCs和NOx的减排比例.  相似文献   

11.
奥运前后北京及其周边大气六氟化硫浓度的变化   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年6~9月,对北京、兴隆、廊坊、沧州、石家庄、涿州、保定和禹城等8个站点进行每日2次的空气样品采集,利用气相色谱法对样品中的SF6浓度进行分析,以期对华北地区大气SF6的浓度范围、空间分布及其变化规律进行初步探索.结果表明,北京及其周边大气SF6浓度分布存在空间差异,8个站点在采样期间的平均浓度分别为:(10.7±5.1)′10-12、(6.7±0.6)′10-12、(7.2±1.6)′10-12、(8.0±1.7)′10-12、(9.6±5.5)′10-12、(7.6±2.1)′10-12、(8.3±3.5)′10-12和(8.5±2.0)′10-12(V/V),区域平均浓度为8.3′10-12(V/V).华北地区SF6的浓度大小和变化幅度主要受人为排放源的影响,呈现出脉冲式排放.兴隆站可作为华北区域的本底站点,观测期间其SF6的浓度呈线性增加,增长速度远大于全球本底增长速度.奥运前后的各种减排措施对北京SF6的排放有一定影响.  相似文献   

12.
南京城区冬季大气污染特征   总被引:5,自引:2,他引:3       下载免费PDF全文
为探究南京城区冬季主要大气污染物浓度变化规律,运用南京市空气自动监测站的φ(CO)、φ(O3)、φ(NO2)、φ(SO2)、ρ(PM2.5)和ρ(PM10)逐时资料,结合同期气象数据,分析了2014年冬季(2014年12月—2015年2月)南京城区大气污染浓度水平和变化特征,探讨2015年春节期间在实施减排措施下气象条件对空气质量的影响.结果表明:① 观测期φ(CO)日均值和φ(O3)小时均值未超过GB 3095—2012《环境空气质量标准》二级标准限值;ρ(PM2.5)、ρ(PM10)、φ(NO2)、φ(SO2)日均值分别超标44%、38%、34%、2%;ρ(PM2.5)、ρ(PM10)最大日均值分别为231和283 μg/m3,分别是GB 3095—2012二级标准限值的3.1、1.9倍. ② 日变化分析显示,φ(CO)与φ(NO2)呈早晚双峰型变化,与早晚交通高峰源排放有关;φ(O3)呈明显的单峰型,在午后出现峰值;φ(SO2)呈单峰型且夜间浓度低于白天;ρ(PM2.5)和ρ(PM10)为双峰型变化,峰值出现在10:00和22:00左右. ③ 南京地区污染物周末浓度整体高于工作日,其中周末φ(CO)、φ(NO2)和ρ(PM2.5)显著高于工作日,“周末效应”显著. ④ 2015年春节期间,南京实施减排措施后,即使在不利的气象条件下,污染物浓度也未出现明显升高,说明减排措施有效削弱了污染源的排放,是保持南京地区良好空气质量的重要因素.   相似文献   

13.
短期减排是我国城市应对大气污染事件的重要应急管控手段,但短期减排的效益尚未得到完善分析.2022年3月14~20日,广东省深圳市为抑制新冠疫情传播实施了全市管控,为评估短期减排对华南城市春季空气质量的影响提供独特机会.结合深圳市高精度环境空气质量监测与气象观测等多源数据,分析了深圳市管控期间前后的空气质量变化.此次管控前和管控期中均有部分日期天气形势静稳,局地污染水平主要反映本地排放,有利于分析本地减排的影响.观测与WRF-GC区域化学模拟都表明,与珠三角周边城市相比,深圳市管控期间由于市内交通源排放显著减少,深圳市二氧化氮(NO2)浓度降低(-26±9.5)%,可吸入颗粒物(PM10)浓度降低(-28±6.4)%,细颗粒物(PM2.5)浓度降低(-20±8.2)%,但臭氧(O3)浓度无显著变化[(-1.0±6.5)%].TROPOMI卫星观测的甲醛和二氧化氮柱浓度数据对比表明,2022年春季珠三角臭氧光化学主要受挥发性有机物(VOCs)浓度控制,对氮氧化物浓度降低不敏感,反而可能因氮氧化物对臭氧滴...  相似文献   

14.
为分析苏州市城区冬季VOCs污染水平、变化特征及污染来源,采用质子转移飞行时间质谱仪(PTR-TOF-MS)进行走航和定点观测.结果表明:①城区中心走航期间总挥发性有机物(TVOC)平均浓度为95.00 μg/m3,环高架快速路走航期间TVOC平均浓度为131.48 μg/m3,定点观测期间TVOC平均浓度为72.85 μg/m3.对比其他城市城区,苏州市城区VOCs污染较轻,环境空气质量处于优良水平(浓度数据基于PTR-TOF-MS所能观测物种).②走航及定点观测期间平均浓度最高的均为含氧挥发性有机物(OVOC),城区中心走航区域OVOC占比为35.83%,环高架快速路走航区域OVOC占比为43.33%,定点观测(处于闹市区)期间OVOC占比为33.36%.③观测期间对OFP贡献较大组分为OVOCs、烯烃、芳香烃.结合无机物种定点观测数据发现,VOCs和NO2的浓度峰值与PM2.5浓度峰值变化趋势一致.结合VOCs浓度呈早晚高峰的日变化规律,判断机动车尾气可能是VOCs、NO2、PM2.5的主要排放源之一.④特征比值法判断观测期间空气老化程度较高,苯系物主要来自交通源和燃料燃烧源.PMF(正矩阵因子分解法)源解析结果表明,VOCs污染源包括溶剂使用源、空气老化和二次形成源、植物源、交通源、工业源,结合非参数风回归模型(NWR)评估污染主要来自定点观测点北方的工业企业以及东南方向的环高架快速行驶的机动车,与走航观测高值点位一致.利用MIR系数法得出5类VOCs来源因子,其OFP贡献率依次为空气老化和二次形成源>溶剂使用源>植物源>交通源>工业源.研究显示,苏州市需加强管控溶剂使用行业的VOCs排放量,倡导在上下班高峰期、周末使用公共交通出行,减少机动车尾气排放,可以有效减少当地O3生成.   相似文献   

15.
为定量解析PM2.5浓度与排放源削减比例之间的关系,利用WRF-NAQPMS/OSAM模式对2017年12月京津冀及周边地区“2+26”城市的PM2.5浓度变化和来源解析进行了模拟,并基于来源解析结果对各城市进行了迭代减排实验.结果表明,各城市削减本地排放源的效果最为显著,由于受化学生成影响引起的排放源和PM2.5浓度之间的高度非线性关系,使得线性减排方案具有较大的局限性.各城市排放源削减引起的PM2.5浓度变化主要由排放源的一次贡献和化学生成的二次贡献组成,其中化学生成的二次贡献浓度与行业解析结果的函数之间存在显著的线性关系.随着排放源的削减,清洁期间PM2.5浓度中各组分的浓度随之下降,污染期间硝酸盐、二次有机气溶胶、铵盐等浓度不降反升,这为迭代减排方案中物种的选择提供了指导意义.  相似文献   

16.
颗粒物中重金属元素可对人体健康造成不利影响,粒径越小危害越大.利用在线重金属观测仪于2021年1月7~25日在郑州市连续测定PM1中Al、 Si、 K、 Ca、 V、 Cr、 Mn、 Fe、 Ni、 Cu、 Zn、 As、 Se、 Ba、 Pb和Cd共16种重金属元素.结果表明,观测期间ρ(K)的浓度最高(0.62μg·m-3).根据污染物浓度和气象特征,将观测期间划分为清洁日、沙尘日和霾日.大气PM1中重金属污染特征和健康风险评价在不同污染过程下的贡献不同.利用美国EPA健康风险评价法评估重金属的健康风险,采用富集因子法和正定矩阵因子模型(PMF)解析重金属来源,并利用浓度权重轨迹分析法(CWT)和后向轨迹法对传输的影响进行评估.结果表明在不同污染过程下Zn、 As、 Se、 Pb和Cd的富集因子超过100,均受人类活动影响较大.在观测期间重金属主要来源为工业源、燃煤/生物质源、机动车源和扬尘源.将健康风险结果代入PMF分析发现,在清洁日、沙尘日和霾日期间工业源是致癌与非致癌健康风险的主要贡献源,且本地区PM...  相似文献   

17.
首都重大活动与空气重污染应急减排措施效果对比分析   总被引:3,自引:3,他引:0  
以2015年"9·3"阅兵活动及同年冬季两次空气重污染红色预警为例,针对气象要素及污染物浓度变化特征进行对比分析,对不同减排措施下污染物减排比例估算,并利用WRF-CAMx模型,对减排带来的PM_(2.5)污染改善效果进行了定量评估与对比分析.结果表明,阅兵期间(8月20日至9月4日)PM_(2.5)日均浓度(19.0μg·m~(-3))分别比阅兵前(8月15~19日)和阅兵后(9月5~15日)日均浓度降低了60.0%和48.0%,第一次红色预警期间PM_(2.5)日均浓度(232.3μg·m~(-3))高于第二次红警(216.6μg·m~(-3)),第二次启动重污染红色预警之前的空气质量好于第一次红警.阅兵期间北京及周边省市污染物减排比例普遍大于红警期间,为保障"阅兵蓝"的实现提供了人为可控的有利条件."9·3"阅兵、北京首次及第二次红色预警期间采取污染物应急减排措施情况下,北京PM_(2.5)浓度分别平均降低了32.4%、 17.1%和22.0%.阅兵期间与红色预警相比,PM_(2.5)浓度降低比例较高,归因于更大力度的区域污染物协同减排以及阅兵期间易于污染物扩散的气象条件.污染减排力度、应急控制措施实施时机以及气象条件是可能影响应急污染控制措施污染改善效果的重要因素.  相似文献   

18.
缪青  杨倩  吴也正  魏恒  周民锋  张晓华  邹强 《环境科学》2022,43(6):2851-2857
为了解COVID-19管控期间苏州市PM2.5中金属元素浓度变化和来源,利用多金属在线监测仪于2019年12月1日~2020年3月31日测定了14种金属元素小时浓度,分析停产前、停产期和复工期金属元素浓度变化,并采用PMF模型分析其污染来源.结果表明,停产期Cr、 Mn、 Zn和Fe浓度降幅最大,较停产前分别降低了87.6%、 85.6%、 78.3%和72.2%;复工期Mn、 Cr、 Zn和Fe浓度升幅最大,较停产期分别增加了227.0%、 215.4%、 147.4%和113.4%.K在3个阶段日变化均不相同;Zn在3个阶段日变化均呈单峰形,但峰宽和峰值出现时间有所不同;Fe、 Mn、 Pb、 Se和Hg日变化无明显变化,仅仅是浓度发生了变化;Ca、 Ba、 Cu、 As、 Cr和Ni停产期和复工期日变化较停产前变化较大. PMF模型来源解析结果表明,金属元素主要来源于扬尘、机动车、燃煤、工业冶炼和混合燃烧源,其中工业冶炼源浓度变化最大,停产期浓度下降了89.0%,复工期浓度较停产期上升了358.0%.  相似文献   

19.
北京夏末秋初不同天气形势对大气污染物浓度的影响   总被引:20,自引:0,他引:20       下载免费PDF全文
根据2007~2008年地面、850hPa和500hPa天气图,结合主要气象要素将夏末秋初(8月和9月)影响北京地区的主要天气系统分为高污染的积累天气型(包括槽前无降水、槽后脊前、脊、副高4种基本型)和清洁的清除天气型(包括槽或槽前有降水、槽后有降水或偏北风2种基本型).北京地区4站2007年在积累天气型控制时NOx、O3(日小时均值最大值)、PM2.5和PM10浓度分别为38.1×10-9(体积分数),115.2×10-9(体积分数),90.6μg/m3,212.5μg/m3,清除天气型控制时4种污染物浓度分别为36.3×10-9(体积分数),68.9×10-9(体积分数),39.3μg/m3,125.4μg/m3;2008年施行北京奥运空气质量保障措施期间,上述4种污染物在积累天气型控制时分别为19.3×10-9(体积分数),87.1×10-9(体积分数),66.3μg/m3,99.6μg/m3,清除天气型控制时分别为19.0×10-9(体积分数),62.5×10-9(体积分数),41.0μg/m3,65.2μg/m3;尽管施行了源减排措施,积累天气型控制时北京地区污染物浓度仍相对较高,因此需关注此天气形势下污染物的变化.  相似文献   

20.
基于南昌高精度温室气体浓度观测站(南昌站)及南昌城市加密观测站(加密站)2020年8月—2021年8月大气CO2在线连续观测资料,分析了南昌地区大气CO2浓度变化特征、区域大气输送的影响及潜在排放源区分布特征,并对加密站数据可用性进行研判.结果表明,研究期内南昌站CO2的平均浓度为444.2×10-6,大气CO2浓度日变化呈日间低、早晚高的特征,且夏季大气CO2浓度日振幅最大;季节变化呈现冬季>春季>秋季>夏季的规律.南昌地区的气团输送主要受盛行风向及大气层结稳定度的影响,即夏季南方、东方气团带来较高CO2浓度,其它季节则由北方气团造成CO2浓度升高;长三角地区、武汉地区是南昌大气CO2持久稳定的潜在贡献源区.加密站与南昌站数据季节变化特征和日变化特征基本一致,可以反映局地CO2浓度变化特征,在年尺度上构建回归方程能够校正加密站数据;近地面CO2浓度与...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号