首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The release of unburnt coal particles and associated polycyclic aromatic hydrocarbons (PAHs) may cause adverse impacts on the environment. This study assessed variations in the concentration and composition of PAHs in a set of fifty coal samples from eleven coal basins worldwide. The maximum PAH concentrations at high volatile bituminous rank were recorded in samples from a single basin. Considering the entire sample set, the highest PAH concentrations were in fact found outside of this rank range, suggesting that the maceral composition and thus the coal’s origin also influenced PAH concentrations. The examination of the PAH compositions revealed that alkylated 2-3 ring PAHs remain dominant compounds irrespective of coal rank or origin. Multivariate analysis based on PAH and maceral content, bulk and maturity parameters allowed the recognition of seven groups with different rank and origin within the coal sample set.  相似文献   

2.
Wu SP  Tao S  Liu WX 《Chemosphere》2006,62(3):357-367
The size distributions of 16 polycyclic aromatic hydrocarbons (PAHs) and particle mass less than 10 microm in aerodynamic diameter (Dp) were measured using a nine-stage low-volume cascade impactor at rural and urban sites in Tianjin, China in the winter of 2003-2004. The particles exhibited the trimodal distribution with the major peaks occurring at 0.43-2.1 and 9.0-10.0 microm for both urban and rural sites. The concentrations of the total PAH (sum of 16 PAH compound) at rural site were generally less than those of urban site. Mean fraction of 76.5% and 63.9% of the total PAH were associated with particles of 0.43-2.1 microm at rural and urban sites, respectively. Precipitation, temperature, wind speed and direction were the important meteorological factors influencing the concentration of PAHs in rural and urban sites. The distributions of PAHs concentration with respect to particle size were similar for rural and urban samples. The PAHs concentrations at the height of 40 m were higher than both of 20 and 60 m at urban site, but the mass median diameter (MMD) of total PAH increased with the increasing height. The mid-high molecular weight (278 >or= MW >or= 202) PAHs were mainly associated with fine particles (Dp or=MW >or=178) PAHs were distributed in both of fine and coarse particle. The fraction of PAHs associated with coarse particles (Dp>2.1 microm) decreased with increasing molecular weight. The relatively consistent distribution of PAHs seemed to indicate the similar combustion source of PAHs at both of rural and urban sites. The fine differences of concentration and distribution of PAHs at different levels at urban site suggested that the different source and transportation path of particulate PAHs.  相似文献   

3.
We investigated the distribution and transport of coal tar-derived polycyclic aromatic hydrocarbons (PAHs) in fine-grained residuum and alluvial floodplain deposits that underlie a former manufactured gas plant. All 16 USEPA priority pollutant PAHs are present at this site and have penetrated the entire 4-5m thickness of clayey sediments, which unconformably overly limestone bedrock. Concentrations of less hydrophobic PAHs (e.g., naphthalene, 0.011-384mg kg(-1)) were about 10 times higher than those of highly hydrophobic PAHs (e.g., benzo[g,h,i]perylene -0.002 to 56.03mgkg(-1)). Microscopic examination of thin-sections of the clay-rich sediments showed that fractures and rootholes, which can act as pathways for flow, occur throughout the profiles. Tarry residue was found coating some fractures and rootholes, indicating that coal tar was, in some cases, able to penetrate as an immiscible phase. However, in the vast majority of samples in which PAHs were detected, there was no detectable tar residue, suggesting that much of the transport occurred in the dissolved phase. Examination of thin-sections with an epifluorescent microscope indicated that PAHs, which fluoresce brightly when exposed to UV light, are distributed throughout the soil matrix, rather than being confined to fractures and rootholes. The widespread distribution of PAHs is most likely due to diffusion-controlled exchange between the fast-flow pathways in the fractures and rootholes and the relatively immobile water in the fine-grained matrix. This implies that fractures and rootholes can play a major role in controlling transport of highly hydrophobic compounds in fine-grained sediments, which would otherwise act as barriers to contaminant migration.  相似文献   

4.
Temporal and seasonal variations of polycyclic aromatic hydrocarbons (PAHs) concentrations in leaves of Ficus benghalensis were investigated in Varanasi city (India). Leaf samples were collected from six sites from urban area of Varanasi and from a control site. PAH extraction was done by sonication in dichloromethane-acetone and quantification by GC-MS. In January total leaf PAHs concentrations at all the urban sites were twice higher as compared to other season's viz. summer and rainy. In contrast, at the control site leaf PAHs concentrations showed lower values than urban sites. The maximum concentrations of total PAHs in winter were due to the medium molecular weight PAHs which increases with respect to both low and high molecular weight PAHs. The temporal variation of medium molecular weight PAHs was similar both at the urban and remote sites. These results support biomonitoring ability of Ficus benghalensis leaves to temporal variations in PAHs contamination.  相似文献   

5.
Zhang W  Wei C  Chai X  He J  Cai Y  Ren M  Yan B  Peng P  Fu J 《Chemosphere》2012,88(2):174-182
The occurrence, behaviors and fate of 18 PAHs were investigated in a coking wastewater treatment plant in Songshan coking plant, located in Shaoguan, Guangdong Province of China. It was found that the target compounds occurred widely in raw coking wastewater, treated effluent, sludge and gas samples. In raw coking wastewater, high molecular weight (MW) PAHs were the dominant compounds, while 3-6 ring PAHs predominated in the final effluent. The dominant compounds in gas samples were phenathrene, fluoranthene and pyrene, while they were fluoranthene, pyrene, chrysene and benzo[k]fluoranthene for sludge. The process achieved over 97% removal for all the PAHs, 47-92% of eliminations of these target compounds in liquid phase were achieved in biological stage. Different behaviors of PAHs were observed in the primary tank, anaerobic tank, aerobic tank, hydrolytic tank and coagulation tank units, while heavier and lower ones were mainly removed in anaerobic tank and aerobic tanks, respectively. Regarding the fate of PAHs, calculated fractions of mass losses for low MW PAHs due to transformation and adsorption to sludge accounted for 15-50% and 24-49%, respectively, while the rest was less than 1%. For high MW PAHs, the mass losses were mainly due to adsorption to sludge and separation with tar (contributing 56-76% and 22-39%, respectively), and the removal through transformation was less.  相似文献   

6.
Jafvert CT  Lane D  Lee LS  Rao PS 《Chemosphere》2006,62(2):315-321
The equilibrium distributions, between water and coal-tar contaminated sediment, of 16 monocyclic and polycyclic aromatic hydrocarbons were measured and evaluated for consistency with a Raoult's Law-based quantitative relationship. The quantitative relationship calculates the pore water concentration as the product of the aqueous solubility (or for compounds that are solid at room temperature, the aqueous super-cooled liquid solubility) and the mole fraction concentration of the compound within the liquid coal tar. Sediment was collected at five locations at two depths within a 120 m stretch of a river adjacent to a former manufactured gas plant, and all samples contained non-aqueous phase liquid (NAPL) coal tar. Although the amount of coal tar varied between samples by over an order of magnitude, the Raoult's Law-based NAPL-water partition coefficients for each monocyclic or 2- or 3-ring polycyclic aromatic hydrocarbon measured in this study generally varied within a factor of 2 over all sediments.  相似文献   

7.
Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China   总被引:6,自引:0,他引:6  
Yin CQ  Jiang X  Yang XL  Bian YR  Wang F 《Chemosphere》2008,73(3):389-394
The occurrence and distribution of polycyclic aromatic hydrocarbons (PAHs) in vegetable soils from five vegetable fields (including: Liuhe, Xixia, Pukou, Jianye and Yuhua districts) in Nanjing outskirt were investigated with high performance liquid chromatography (HPLC) equipped with fluorescence detector. The total concentrations of 15 priority PAHs in 126 soil samples ranged from 21.91 to 533.84ngg(-1) dry weight, and the sum of seven carcinogenic PAHs concentrations varied from 1.48 to 236.19ngg(-1) dry weight. Statistical analysis of the PAHs concentrations showed that the highest PAHs concentration was observed in Liuhe, and the lowest PAHs concentrations were found in Xixia among the five districts. The ratios of fluoranthene to sum of fluoranthene and pyrene concentrations (Flt/(Flt+Pyr)) were more than 0.5 in 99% of vegetable soil samples, showing that the PAHs in soils were generally derived from straw and coal combustion sources. The results from principal component analysis (PCA) further indicated that extensive combustion activities affected the PAHs distribution in Nanjing vegetable soils.  相似文献   

8.
Endo S  Xu W  Goss KU  Schmidt TC 《Chemosphere》2008,73(4):532-538
Equilibrium partitioning coefficients between an industrial coal tar sample and water (K(CT/w)) were determined for 41 polar and nonpolar solutes in batch systems. Together with literature values, 69 K(CT/w) data were analyzed using the following model approaches: Raoult's law, the single parameter linear free energy relationship (SPLFER) with octanol-water partitioning coefficients (K(ow)), the linear solvation energy relationships (LSERs), SPARC and COSMOtherm. Estimations by Raoult's law and the SPLFER agreed well with the experimental log K(CT/w) values for the investigated coal tar, with root mean square errors (RMSE) of 0.31 and 0.33, respectively. LSER resulted in as good estimations (RMSE=0.29) as the previous two. The LSER analysis revealed significant hydrogen (H)-bond acceptor properties of the studied coal tar phase. Using naphthalene as a surrogate solvent for the coal tar phase, SPARC and COSMOtherm provided fairly good predictions (RMSE of 0.63 and 0.65, respectively) of log K(CT/w), without any additional empirical parameter. Further calculations using SPARC and COSMOtherm for partitioning between water and other tar-components (e.g., benzofuran, phenol and quinoline) suggested that minor components in coal tar do not significantly influence K(CT/w) of nonpolar solutes, and that Raoult's law and the SPLFER thus may be generally applied to these types of solutes, e.g., polycyclic aromatic hydrocarbons and alkylbenzenes, regardless of coal tar compositions. In contrast, partitioning of H-bonding solutes (e.g., phenols) can significantly vary depending on the amount of polar tar-components such as N-heterocyclic aromatic compounds. Therefore, the presented successful applications of Raoult's law and SPLFER to the studied coal tar could be a special case, and these simple approaches may not provide reasonable estimations for partitioning of H-bonding solutes from compositionally different coal tars.  相似文献   

9.
Hyun S  Jafvert CT  Lee LS  Rao PS 《Chemosphere》2006,63(10):1621-1631
Placement of a microbial active sand cap on a coal tar-contaminated river sediment has been suggested as a cost effective remediation strategy. This approach assumes that the flux of contaminants from the sediment is sufficiently balanced by oxygen and nutrient fluxes into the sand layer such that microbial activity will reduce contaminant concentrations within the new benthic zone and reduce the contaminant flux to the water column. The dynamics of such a system were evaluated using batch and column studies with microbial communities from tar-contaminated sediment under different aeration and nutrient inputs. In a 30-d batch degradation study on aqueous extracts of coal tar sediment, oxygen and nutrient concentrations were found to be key parameters controlling the degradation rates of polycyclic aromatic hydrocarbons (PAHs). For the five PAHs monitored (naphthalene, fluorene, phenanthrene, anthracene, and pyrene), degradation rates were inversely proportional to molecular size. For the column studies, where three columns were packed with a 20-cm sand layer on the top of a 5 cm of sediment layer, flow was established to sand layers with (1) aerated water, (2) N(2) sparged water, or (3) HgCl(2)-sterilized N(2) sparged water. After steady-state conditions, PAH concentrations in effluents were the lowest in the aerated column, except for pyrene, whose concentration was invariant with all effluents. These laboratory scale studies support that if sufficient aeration can be achieved in the field through either active and passive means, the resulting microbially active sand layer can improve the water quality of the benthic zone and reduce the flux of many, but not all, PAHs to the water column.  相似文献   

10.
Remobilization of 16 polycyclic aromatic hydrocarbons (PAHs) during sediment resuspension was investigated using a particle entrainment simulator at shear stress from 0.2 to 0.5Nm(-2), typical of the energy levels present in many tidally driven aquatic environments. The results suggested that desorption from the entrained particles was the primary source of dissolved PAHs. summation operatorPAHs concentrations in particles on volume normalization increased about four times. However, on mass weight basis, summation operatorPAHs concentrations decreased from 6039.74+/-138.28microgkg(-1) to 1665.39+/-112.26microgkg(-1). The same trend was observed for individual PAHs. Dissolved concentrations of PAHs demonstrated significant differences depending on molecular weight and applied shear. The distribution of PAHs between particle and water phase suggested that for three-ring PAHs, the amounts of PAHs in particles were higher than the predicted values during our experiments. This might be due to presence of another active sorbent.  相似文献   

11.
Profiles of PAH emission from steel and iron industries   总被引:5,自引:0,他引:5  
Yang HH  Lai SO  Hsieh LT  Hsueh HJ  Chi TW 《Chemosphere》2002,48(10):3777-1074
In order to characterize the polycyclic aromatic hydrocarbons (PAHs) emission from steel and iron industries, this study measured the stack emission of twelve steel and iron plants in southern Taiwan to construct a set of source fingerprints. The study sampled the emissions by the USEPA's sampling method 5 with the modification of Graseby for the gas and particulate phase PAH and, then, used Hewlett-Packard 5890 gas chromatograph equipped with mass spectrometer detector to analyze the samples. The steel and iron industries are classified into three categories on the basis of auxiliary energy source: Category I uses coal as fuel, Category II uses heavy oil as fuel and Category III uses electric arc furnace. The pollution source profiles are obtained by averaging the ratios of individual PAH concentrations to the total concentration of 21 PAHs and total particulate matter measured in this study. Results of the study show that low molecular weight PAHs are predominant in gas plus particulate phase for all three categories. For particulate phase PAHs, however, the contribution of large molecular weight compounds increases. Two-ring PAHs account for the majority of the mass, varying from 84% to 92% with an average of 89%. The mass fractions of 3-, 4-, 5-, 6-ring PAHs in Category I are found to be more than those of the other two categories. The mass of Category III is dominated by 7-ring PAHs. Large (or heavy) molecular weight PAHs (HMW PAHs) are carcinogenic. Over all categories, these compounds are less than 1% of the total-PAH mass on the average. The indicatory PAHs are benz[a]anthracene, benzo[k]fluoranthene, benzo[ghi]perylene for Category I, benzo[a]pyrene, acenaphthene, acenaphthylene for Category II and coronene, pyrene, benzo[b]chrycene for Category III. The indicatory PAHs among categories are very different. Thus, dividing steel and iron industry into categories by auxiliary fuel is to increase the precision of estimation by a receptor model. Average total-PAH emission factors for coal, heavy oil and electric arc furnace were 4050 μg/kg-coal, 5750 μg/l-oil, 2620 μg/kW h, respectively. Carcinogenic benzo[a]pyrene for gas plus particulate phase was 2.0 g/kg-coal, 2.4 μg/l-oil and 1.4 μg/kW h for Category I, II and III, respectively.  相似文献   

12.
The effect of temperature on the range and rate of disappearance of four polycyclic aromatic hydrocarbons (PAHs; fluorene, anthracene, pyrene and chrysene) added as a mixture of pure compounds to two different soils (light loam and loamy sand) was investigated over 180 days in a laboratory experiment. An increase in temperature from 10 to 25 degrees C enhanced the losses of all four PAHs from both soils. The effect of temperature on the rate of PAH disappearance depended on the physico-chemical properties of the compound and of the soil. The long half-lives at lower temperatures as obtained in the laboratory tests may suggest high persistence of higher molecular weight PAHs under some field conditions.  相似文献   

13.
NSO heterocycles (HET) are typical constituents of coal tars. However, HET are not yet routinely monitored, although HET are relatively toxic coal tar constituents. The main objectives of the study is therefore to review previous studies and to analyse HET at coal tar polluted sites in order to assess the relevance of HET as part of monitored natural attenuation (MNA) or any other long-term monitoring programme. Hence, natural attenuation of typical HET (indole, quinoline, carbazole, acridine, methylquinolines, thiophene, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, methylbenzofurans, dimethylbenzofurans and xanthene) were studied at three different field sites in Germany. Compound-specific plume lengths were determined for all main contaminant groups (BTEX, PAH and HET). The results show that the observed plume lengths are site-specific and are above 250m, but less than 1000m. The latter, i.e. the upper limit, however mainly depends on the level of investigation, the considered compound, the lowest measured concentration and/or the achieved compound-specific detection limit and therefore cannot be unequivocally defined. All downstream contaminant plumes exhibited HET concentrations above typical PAH concentrations indicating that some HET are generally persistent towards biodegradation compared to other coal tar constituents, which results in comparatively increased field-derived half-lives of HET. Additionally, this study provides a review on physicochemical and toxicological parameters of HET. For three well investigated sites in Germany, the biodegradation of HET is quantified using the centre line method (CLM) for the evaluation of bulk attenuation rate constants. The results of the present and previous studies suggest that implementation of a comprehensive monitoring programme for heterocyclic aromatic compounds is relevant at sites, if MNA is considered in risk assessment and for remediation.  相似文献   

14.
M Howsam  K C Jones  P Ineson 《Chemosphere》2001,44(2):155-164
Leaves from three species of deciduous tree (oak, ash and hazel) were sampled at intervals through a growing season in a mature, mixed-deciduous woodland. Polycyclic aromatic hydrocarbon (PAH) concentrations remained within a small range for all species between May and September, deviating significantly only when increases in atmospheric concentrations of PAHs (notably from the 'Bonfire night' festival in early autumn) have been shown. We concluded that the influence of air concentrations was more important than meteorological conditions (temperature, humidity and rainfall) in determining plant concentrations of PAHs over a growing season. Concentrations of 4-, 5- and 6-ring PAHs were positively correlated with time for all species, but there were significant differences in the PAH profile between species sampled from the canopy (oak and ash) compared with the understorey (hazel). Oak and ash had similar PAH profiles, while hazel leaves had proportionally greater concentrations of the heavier molecular weight (4-, 5- and 6-ring) PAHs, and the ratios of these compounds to 3-ring PAHs was positively correlated with time. This affirms earlier work conducted on the same species in the same woodland, where we concluded that the canopy was filtering particles and attendant PAHs from air passing over or through it, and that these particles were transferred to the understorey and the woodland floor.  相似文献   

15.
Sediment samples collected from downstream of the Dongjiang River, a highly urbanized river network within the Pearl River Delta of South China, were analyzed for 28 polycyclic aromatic hydrocarbons (PAHs). Total concentrations of 28 PAHs, 16 priority PAHs designated by the United States Environmental Protection Agency (USEPA) and the seven carcinogenic PAHs classified by the USEPA ranged from 480 to 4600, 100 to 3400 and 10 to 1700 ng/g dry weight, respectively. Principal component analysis-based stepwise multivariate linear regression showed that sediment PAHs were predominantly derived from coal combustion, refined fossil fuel combustion and oil spills, accounting for 37%, 32% and 23%, respectively, of the total loading. The levels of sediment PAHs remained steady from 2002 to 2008, during which fossil fuel consumption had doubled, probably reflecting efforts to control PAH emissions from fossil fuel combustion. Finally, use of natural gas and liquefied petroleum gas in automobiles should be encouraged to improve environmental quality.  相似文献   

16.
Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons   总被引:30,自引:0,他引:30  
Tianjin urban/industrial complex is highly polluted by some persistent organic pollutants. In this study, the levels of 16 priority polycyclic aromatic hydrocarbons (PAHs) were tested in sediment, water, and suspended particulate matter (SPM) samples in 10 rivers in Tianjin. The total concentration of 16 PAHs varied from 0.787 to 1943 microg/g dry weight in sediment, from 45.81 to 1272 ng/L in water, and from 0.938 to 64.2 microg/g dry weight in SPM. The levels of PAHs in these media are high in comparison with values reported from other river and marine systems. Variability of total concentrations of PAHs in sediment, water, and SPM from nine different rivers is consistent with each other. No obvious trends of total PAHs concentration variations were found between upstream and downstream sediment, water, and SPM samples for most rivers, which indicate local inputs and disturbances along these rivers. The spatial distributions of three-phase PAHs are very similar to each other, and they are also similar to those found in topsoil. However, their chemical profiles are significantly different from that of topsoil. The change of profiles is consistent with the different aqueous transport capability of 16 PAHs. Low molecular weight PAHs predomination suggests a relatively recent local source and coal combustion source of PAHs in the study area.  相似文献   

17.
In 1968, five metal enriched sewage sludges containing different concentrations of polynuclear aromatic hydrocarbons (PAHs) were applied to different plots on field soils at two experimental sites, Luddington and Lee Valley, in the UK. This resulted in substantial increases in the total PAH soil concentrations in all plots. Since application, losses have occurred, with the high molecular weight PAHs being more persistent. Calculated half-lives range from under 2 years for naphthalene to over 9 years for benzo[ghi]perylene and coronene. The losses of PAH compounds in these field experiments can be related, in part, to their physico-chemical properties, notably the octanol: water partition coefficient.  相似文献   

18.
Guo W  He M  Yang Z  Lin C  Quan X  Wang H 《Chemosphere》2007,68(1):93-104
This study investigated the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in surface water, suspended particulate matter (SPM) and sediment of Daliao River watershed composed of the Hun River, Taizi River, and Daliao River. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and principal component analysis (PCA). The total concentrations of PAHs ranged from 946.1 to 13448.5 ng l(-1) in surface water, from 317.5 to 238518.7 ng g(-1) dry weight in SPM, and from 61.9 to 840.5 ng g(-1) dry weight in sediments. The levels of PAHs are relatively higher in water and SPM, and lower in sediments, in comparison with those reported for other rivers and marine systems around the world. The composition of PAHs in these mediums was mainly 4-6 rings PAHs. The higher contents of low molecular weight PAHs in the water and SPM suggest a relatively recent local source of PAHs, entered into the river via wastewater discharge and atmospheric way. On the other hand, the heavy pollution of PAHs in sediment and water near heavy industrial area suggests that PAHs have been released from industrial wastewater.  相似文献   

19.
This study characterized organic compounds found in New York State manufactured gas plant (MGP) coal tar vapors using controlled laboratory experiments from four separate MGP sites. In addition, a limited number of deep (0.3–1.2 m above coal tar) and shallow (1.2–2.4 m above coal tar) soil vapor samples were collected above the in situ coal tar source at three of these sites. A total of 29 compounds were consistently detected in the laboratory-generated coal tar vapors at 50°C, whereas 24 compounds were detected at 10°C. The compounds detected in the field sample results were inconsistent with the compounds found in the laboratory-generated samples. Concentrations of compounds in the shallow soil vapor sample were either non-detectable or substantially lower than those found in deeper samples, suggesting attenuation in the vadose zone. Laboratory-generated data at 50°C compared the (% non-aromatic)/(% aromatic) ratio and indicated that this ratio may provide good discrimination between coal tar vapor and common petroleum distillates.  相似文献   

20.
Sharma H  Jain VK  Khan ZH 《Chemosphere》2007,66(2):302-310
This paper reports on polycyclic aromatic hydrocarbons (PAHs) in the atmospheric particulate matter of Jawaharlal Nehru University campus, an urbanized site of New Delhi, India. Suspended particulate matter samples of 24h duration were collected on glass-fiber filter paper for four representative days in each month during January 2002 to December 2003. PAHs were extracted from filter papers using toluene with ultrasonication method and analysed. Quantitative measurements of polycyclic aromatic hydrocarbons (PAHs) were carried out using the gas chromatography technique. The annual average concentration of total PAHs were found to be 668+/-399 and 672+/-388 ng/m3 in the years 2002 and 2003, respectively. The seasonal average concentrations were found to be maximum in winter and minimum during in the monsoon. The results of principal component analysis (PCA) indicate that diesel and gasoline driven vehicles are the principal sources of PAHs in all the seasons. In winter coal and wood combustion also significantly contribute to the PAH levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号