首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m−2 year−1), low-N (N1: 5 g N m−2 year−1), medium-N (N2: 10 g N m−2 year−1), and high-N (N3: 15 g N m−2 year−1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3–5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the “priming” effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement.

  相似文献   

2.

Microorganisms are responsible for the mineralisation of organic nitrogen in soils. NH +4 can be further oxidised to NO3 during nitrification and NO3 can be reduced to gaseous nitrogen compounds during denitrification. During both processes, nitrous oxide (N2O), which is known as greenhouse gas, can be lost from the ecosystem.

The aim of this study was to quantify N2O emissions and the internal microbial N cycle including net N mineralisation and net nitrification in a montane forest ecosystem in the North Tyrolean Limestone Alps during an 18-month measurement period and to estimate the importance of these fluxes in comparison with other components of the N cycle. Gas samples were taken every 2 weeks using the closed chamber method. Additionally, CO2 emission rates were measured to estimate soil respiration activity. Net mineralisation and net nitrification rates were determined by the buried bag method every month. Ion exchange resin bags were used to determine the N availability in the root zone.

Mean N2O emission rate was 0.9 kg N haa, which corresponds to 5 % of the N deposited in the forest ecosystem. The main influencing factors were air and soil temperature and NO 3 accumulated on the ion exchange resin bags. In the course of net ammonification, 14 kg NH +4 −N ha were produced per year. About the same amount of NO 3 −N was formed during nitrification, indicating a rather complete nitrification going on at the site. NO t-3 concentrations found on the ion exchange resin bags were about 3 times as high as NO t-3 produced during net nitrification, indicating substantial NO t-3 immobilisation. The results of this study indicate significant nitrification activities taking place at the Mühleggerköpfl.

  相似文献   

3.
Due to the high temporal and spatial variability of N2O fluxes, estimates of N2O emission from temperate forest ecosystems are still highly uncertain, particularly at larger scales. Although highest N2O emissions with up to 7.0 kg N ha−1 yr−1 were mainly reported for soils affected by stagnant water, most of the reported gas flux measurements were performed at forest sites with well-aerated soils yielding mostly to low mean annual emission rates less than 1.0 kg N ha−1 yr−1. This study compares N2O fluxes from upland (Cambisols) and temporally water-logged (Gleysols, Histosols) soils of the Central Black Forest (South-West Germany) over a period of 2 yr. Mean annual N2O fluxes from investigated soils ranged between 0.2 and 3.9 kg N ha−1 yr−1. The fluxes showed a large variability between the different soil types. Emissions could be clearly ranked in the following order: Cambisols (0.26–0.75 kg N ha−1 yr−1)<Gleysols (1.37–2.68 kg N ha−1 yr−1)<Histosol (3.66–3.95 kg N ha−1 yr−1). Although the Cambisols cover two-thirds of the investigated area, only about half of the overall N2O is emitted from this soil type. Therefore, regional or national N2O fluxes from temperate forest soils are underestimated if soils characterised by intermediate aeration conditions are disregarded.  相似文献   

4.
Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m−3 and 30.7 pg m−3, respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m−2 yr−1. Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m−2 yr−1, respectively.  相似文献   

5.
The distribution of the density of foliage mass and area in forest canopies throughout Finland (60–70°N) were determined on the basis of the permanent sample plots used in the Finnish National Forest Inventory. These parameters were linked to the long-term monthly mean air temperatures for 1961–1990, which had been converted to hourly temperature and radiation values with the help of a weather simulator in order to calculate the spatial distribution of mean yearly emissions of monoterpene and isoprene over Finland. The mean total density of foliage mass in southern Finland (60°⩽latitude<65°N) was around 500 g m−2, equivalent to 4–5 m2 of total foliage area per m2 of land area. In northern Finland (65°⩽latitude<70°N), the maximum values remained below 200–300 g m−2, or 2–3 m2 m−2. The highest values were achieved in forests dominated by mature Norway spruces. The higher temperatures and longer growing season in southern Finland led to greater emissions than in the rest of the country. Total annual emissions of monoterpene were 1070 kg km−2 yr−1 in southern Finland and 460 kg km−2 yr−1 in the north, and those of isoprene from Norway spruce canopies 150 and 40 kg km−2 yr−1, respectively.  相似文献   

6.
Studies of forest nitrogen (N) budgets generally measure inputs from the atmosphere in wet and dry deposition and outputs via hydrologic export. Although denitrification has been shown to be important in many wetland ecosystems, emission of N oxides from forest soils is an important, and often overlooked, component of an ecosystem N budget. During 1 year (2002–03), emissions of nitric oxide (NO) and nitrous oxide (N2O) were measured from Sessile oak and Norway spruce forest soils in northeast Hungary. Accumulation in small static chambers followed by gas chromatography-mass spectrometry detection was used for the estimation of N2O emission flux. Because there are rapid chemical reactions of NO and ozone, small dynamic chambers were used for in situ NO flux measurements. Average soil emissions of NO were 1.2 and 2.1 μg N m−2 h−1, and for N2O were 15 and 20 μg N m−2 h−1, for spruce and oak soils, respectively. Due to the relatively high soil water content, and low C/N ratio in soil, denitrification processes dominate, resulting in an order of magnitude greater N2O emission rate compared to NO. The previously determined N balance between the atmosphere and the forest ecosystem was re-calculated using these soil emission figures. The total (dry+wet) atmospheric N-deposition to the soil was 1.42 and 1.59 g N m−2 yr−1 for spruce and oak, respectively, while the soil emissions are 0.14 and 0.20 g N m−2 yr−1. Thus, about 10–13% of N compounds deposited to the soil, mostly as and , were transformed in the soil and emitted back to the atmosphere, mostly as greenhouse gas (N2O).  相似文献   

7.
Larch forests are distributed extensively in the east Eurasian continent and are expected to play a significant role in the terrestrial ecosystem carbon cycling process. In view of the fact that studies on carbon exchange for this important biome have been very limited, we have initiated a long-term flux observation in a larch forest ecosystem in Hokkaido in northern Japan since 2000. The net ecosystem CO2 exchange (NEE) showed large seasonal and diurnal variation. Generally, the larch forest ecosystem released CO2 in nighttime and assimilated CO2 in daytime during the growing season from May to October. The ecosystem started to become a net carbon sink in May, reaching a maximum carbon uptake as high as 186 g C m−2 month−1 in June. With the yellowing, senescing and leaf fall, the ecosystem turned into a carbon source in November. During the non-growing season, the larch forest ecosystem became a net source of CO2, releasing an average of 16.7 g C m−2 month−1. Overall, the ecosystem sequestered 141–240 g C m−2 yr−1 in 2001. The NEE was significantly influenced by environmental factors. Respiration of the ecosystem, for example, was exponentially dependent on air temperature, while photosynthesis was related to the incident PAR in a manner consistent with the Michaelis–Menten model. Although the vapor pressure deficit (VPD) was scarcely higher than 15 hPa, the CO2 uptake rate was also depressed when VPD surpassed 10 hPa.  相似文献   

8.
A method is developed to estimate wet deposition of nitrogen in a 11×14 km (0.125°Lon.×0.125°Lat.) grid scale using the precipitation chemistry monitored data at 10 sites scattered over South Korea supplemented by the routinely available precipitation rate data at 65 sites and the estimated emissions of NO2 and NH3 at each precipitation monitoring site. This approach takes into account the contributions of local NO2 and NH3 emissions and precipitation rates on wet deposition of nitrogen. Wet deposition of nitrogen estimated by optimum regression equations for NO3 and NH4+ derived from annual total monitored wet deposition and that of emissions of NO2 and NH3 is incorporated to normalize wet deposition of nitrogen at each precipitation rate class, which is divided into 6 classes. The optimum regression equations for the estimation of wet deposition of nitrogen at precipitation monitoring sites are developed using the normalized wet deposition of nitrogen and the precipitation rate at 10 precipitation chemistry monitoring sites. The estimated average annual total wet depositions of NO3 and NH4+ are found to be 260 and 500 eq ha−1 yr−1 with the maximum values of 400 and 930 eq ha−1 yr−1, respectively. The annual mean total wet deposition of nitrogen is found to be about 760 eq ha−1 yr−1, of which more than 65% is contributed by wet deposition of ammonium while, the emission of NH3 is about half of that of NO2, suggesting the importance of NH3 emission for wet deposition of nitrogen in South Korea.  相似文献   

9.
Available information on soil volatile organic compound (VOC) exchange, emissions and uptake, is very scarce. We here describe the amounts and seasonality of soil VOC exchange during a year in a natural Mediterranean holm oak forest growing in Southern Catalonia. We investigated changes in soil VOC dynamics in drought conditions by decreasing the soil moisture to 30% of ambient conditions by artificially excluding rainfall and water runoff, and predicted the response of VOC exchange to the drought forecasted in the Mediterranean region for the next decades by GCM and ecophysiological models.The annual average of the total (detected) soil VOC and total monoterpene exchange rates were 3.2±3.2 and −0.4±0.3 μg m−2 h−1, respectively, in control plots. These values represent 0.003% of the total C emitted by soil at the study site as CO2 whereas the annual mean of soil monoterpene exchange represents 0.0004% of total C. Total soil VOC exchange rates in control plots showed seasonal variations following changes in soil moisture and phenology. Maximum values were found in spring (17±8 μg m−2 h−1). Although there was no significant global effect of drought treatment on the total soil VOC exchange rates, annual average of total VOC exchange rates in drought plots resulted in an uptake rate (−0.5±1.8 μg m−2 h−1) instead of positive net emission rates. Larger soil VOC and monoterpene exchanges were measured in drought plots than in control plots in summer, which might be mostly attributable to autotrophic (roots) metabolism.The results show that the diversity and magnitude of monoterpene and VOC soil emissions are low compared with plant emissions, that they are driven by soil moisture, that they represent a very small part of the soil-released carbon and that they may be strongly reduced or even reversed into net uptakes by the predicted decreases of soil water availability in the next decades. In all cases, it seems that VOC fluxes in soil might have greater impact on soil ecology than on atmospheric chemistry.  相似文献   

10.
The dominant nitrogen (N) fluxes were simulated in a mountain forest ecosystem on dolomitic bedrock in the Austrian Alps. Based on an existing small-scale climate model the simulation encompassed the present situation and a 50-yr projection. The investigated scenarios were current climate, current N deposition (SC1) and future climate (+2.5 degrees C and +10% annual precipitation) with three levels of N deposition (SC2, 3, 4). The microbially mediated N transformation, including the emission of nitrogen oxides, was calculated with PnET-N-DNDC. Soil hydrology was calculated with HYDRUS and was used to estimate the leaching of nitrate. The expected change of the forest ecosystem due to changes of the climate and the N availability was simulated with PICUS. The incentive for the project was the fact that forests on dolomitic limestone stock on shallow Rendzic Leptosols that are rich in soil organic matter are considered highly sensitive to the expected environmental changes. The simulation results showed a strong effect due to increased temperatures and to elevated levels of N deposition. The outflux of N, both as nitrate (6-25kg Nha(-1)yr(-1)) and nitrogen oxides (1-2kg Nha(-1)yr(-1)), from the forest ecosystem are expected to increase. Temperature exerts a stronger effect on the N(2)O emission than the increased rate of N deposition. The main part of the N emission will occur as N(2) (15kg Nha(-1)yr(-1)). The total N loss is partially offset by increased rates of N uptake in the biomass due to an increase in forest productivity.  相似文献   

11.
In Canada about 1.3 million hectares (M ha) of forests are destroyed by wildfires each year, and about 63 % of all these fires are man-caused. During the 1980 and 1981 fire seasons, however, about 10 M ha were damaged; estimated annual emissions from forest fires were ~ 224 million tonnes (M t) of CO2; and over 22 M t of CO, total suspended particulates (TSP), hydrocarbons (HC), nitrogen oxides (NOx), etc.One of the major problems resulting from these forest fires was the severe reduction of visibility over large areas. Daily values of TSP recorded at Fort McMurray, Alberta were in the range of 163–257 μg m−3, while TSP observed at Edmonton, about 850km downstream from large fires, were in the range of 134–220 μg m−3. Nevertheless, surface ozone (O3) and total O3 in vertical air columns had evidently decreased in the area affected by smoke plumes. It is plausible that the O3 depletion might have occurred in the lower troposphere from the overwhelming existence of forest fire smoke in the region.  相似文献   

12.
The role of nitrogen (N) in acidification of soil and water has become relatively more important as the deposition of sulphur has decreased. Starting in 1991, we have conducted a whole-catchment experiment with N addition at Gårdsjön, Sweden, to investigate the risk of N saturation. We have added 41 kg N ha−1 yr−1 as NH4NO3 to the ambient 9 kg N ha−1 yr−1 in fortnightly doses by means of sprinkling system. The fraction of input N lost to runoff has increased from 0% to 10%. Increased concentrations of NO3 in runoff partially offset the decreasing concentrations of SO4 and slowed ecosystem recovery from acid deposition. From 1990-2002, about 5% of the total N input went to runoff, 44% to biomass, and the remaining 51% to soil. The soil N pool increased by 5%. N deposition enhanced carbon (C) sequestration at a mean C/N ratio of 42-59 g g−1.  相似文献   

13.
Over a 1-year period 16.40g Clm−2, 10.35 g Na m−2, 2.11 g SO4-S m−2, 1.24g Mg m−2, 0.39 g K m−2, 0.37 g Ca m−2 and 0.21 g inorganic N m−2 were deposited in precipitation 450 m inland on the eastern coastal plain of sub-Antarctic Marion Island (46°54′S, 37°45′E). Dissolved PO4-P and organic forms of N were not detected in the precipitation samples. Concentrations of Cl, Na, Mg, Ca and K, as well as the total ionic concentration in the precipitation samples were significantly negatively correlated with the amount of precipitation. The ionic concentration order (Cl > Na > SO4-S > Mg > K ≈ Ca) in the precipitation was very similar to that in the surrounding ocean. It is likely that most of the inorganic N found in the precipitation originated in penguin rookeries on the nearby shore zone. A comparison is made between precipitation inputs of nutrients at the island and those at other subpolar sites in the S and N Hemispheres.  相似文献   

14.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

15.
Simulations with the process oriented Forest-DNDC model showed reasonable to good agreement with observations of soil water contents of different soil layers, annual amounts of seepage water and approximated rates of nitrate leaching at 79 sites across Germany. Following site evaluation, Forest-DNDC was coupled to a GIS to assess nitrate leaching from German forest ecosystems for the year 2000. At national scale leaching rates varied in a range of 0–>80 kg NO3–N ha−1 yr−1 (mean 5.5 kg NO3–N ha−1 yr−1). A comparison of regional simulations with the results of a nitrate inventory study for Bavaria showed that measured and simulated percentages for different nitrate leaching classes (0–5 kg N ha−1 yr−1:66% vs. 74%, 5–15 kg N ha−1 yr−1:20% vs. 20%, >15 kg N ha−1 yr−1:14% vs. 6%) were in good agreement. Mean nitrate concentrations in seepage water ranged between 0 and 23 mg NO3–N l−1.  相似文献   

16.

Stable isotope analysis of15N/14N and18O/16O - nitrate was used to investigate the nitrate dynamics and potential groundwater pollution in an Alpine forest stand in Tyrol/Austria. The dynamics of δ15−Nnitrate values were followed in a forest ecosystem. The stable isotopic values of the throughfall are comparable with other studies. The completely decoupled dynamics of the δ15−Nnitrate of the precipitation and the surface water was observed. High variations in δ15-N - nitrate values in rainfall indicate that nitrate of different sources is deposited at that site. A significant correlation between the δ15Nnitrate values of the surface water and soil water was obtained, while no significant correlation between the δ15Nnitrate values of any precipitation sample with the surface water could be found. This suggests that the main source of nitrate in soil water originates from microbiological activity such as nitrification reactions and less from nitrate input by deposition. The results of δ18Onitrate measurements strongly supported the microbiological origin of nitrate in the surface and soil water. In an additional lysimeter experiment,15N - labelled nitrate was applied to study nitrate transport in soil. After 130 days and the collection of 300 L leachate, a total of 52% of the applied nitrate was detected in seepage water.

  相似文献   

17.
The concentrations of total gaseous mercury (TGM) in air over the southern Baltic Sea and dissolved gaseous mercury (DGM) in the surface seawater were measured during summer and winter. The summer expedition was performed on 02–15 July 1997, and the winter expedition on 02–15 March 1998. Average TGM and DGM values obtained were 1.70 and 17.6 ng m−3 in the summer and 1.39 and 17.4 ng m−3 in the winter, respectively. Based on the TGM and DGM data, surface water saturation and air-water fluxes were calculated. The results indicate that the seawater was supersaturated with gaseous mercury during both seasons, with the highest values occurring in the summer. Flux estimates were made using the thin film gas-exchange model. The average Hg fluxes obtained for the summer and winter measurements were 38 and 20 ng m−2 d−1, respectively. The annual mercury flux from this area was estimated by a combination of the TGM and DGM data with monthly average water temperatures and wind velocities, resulting in an annual flux of 9.5 μg m−2 yr−1. This flux is of the same order of magnitude as the average wet deposition input of mercury in this area. This indicates that reemissions from the water surface need to be considered when making mass-balance estimates of mercury in the Baltic Sea as well as modelling calculations of long-range transboundary transport of mercury in northern Europe.  相似文献   

18.
Emissions of nitric oxide (NO) were determined during late spring and summer 1995 and the spring of 1996 from four agricultural soils on which four different crops were grown. These agricultural soils were located at four different sites throughout North Carolina. Emission rates were calculated using a dynamic flow-through chamber system coupled to a mobile laboratory for in-situ analysis. Average NO fluxes during late spring 1995 were: 50.9±47.7 ng N m−2 s−1 from soil planted with corn in the lower coastal plain. Average NO fluxes during summer 1995 were: 6.4±4.6 and 20.2±19.0 ng N m−2 s−1, respectively, from soils planted with corn and soybean in the coastal region; 4.2±1.7 ng N m−2 s−1 from soils planted with tobacco in the piedmont region; and 8.5±4.9 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. Average NO fluxes for spring 1996 were: 66.7±60.7 ng N m−2 s−1 from soils planted with wheat in the lower coastal plain; 9.5±2.9 ng N m−2 s−1 from soils planted with wheat in the coastal plain; 2.7±3.4 ng N m−2 s−1 from soils planted with wheat in the piedmont region; and 56.1±53.7 ng N m−2 s−1 from soils planted with corn in the upper piedmont region. An apparent increase in NO flux with soil temperature was present at all of the locations. The composite data from all the research sites revealed a general positive trend of increasing NO flux with soil water content. In general, increases in total extractable nitrogen (TEN) appeared to be related to increased NO emissions within each site, however a consistent trend was not evident across all sites.  相似文献   

19.
A novel passive sampling technique using a funnel–adsorber–cartridge device was adopted and validated in the field during a long-term monitoring program on the atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in three rural regions of southern Germany. Apart from seasonal variations, fairly stable annual deposition rates around 200 μg m−2 yr−1 for the sum of PAHs were obtained. The time-integrating passive samplers showed that spatial variability due to topography was negligible and differences between open-field and forest deposition were within a factor of 2. Based on correlations with ambient temperature, advection was identified as the most important factor that controls the atmospheric deposition of PAHs. Gas-adsorption contributes significantly to the deposition of the semivolatile compounds in forests, but particle deposition seems to be the major pathway for all PAHs.  相似文献   

20.

The water balance for the site Mühleggerköpfl in the North Tyrolean Limestone Alps has been established to a soil depth of 50 cm. The evaporation amounts to 42% and deep percolation is 58 % of the precipitation. The surface runoff was negligible and therefore the according nitrate fluxes as well. Soil water analysis revealed mean nitrate concentrations of 3 to 15 mg NO3 L−1, depending on soil depth. The nitrate concentrations at 50 cm soil depth and the associated percolation rates led to NO2 N outputs of 15.9 kg NO3 N ha−1 in the year 1999 and 7.9 kg NO3 N ha−1 in the year 2000.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号