首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical pollution of the environment has become a major source of concern. Studies on degradation of organic compounds have shown that some microorganisms are extremely versatile at catabolizing recalcitrant molecules. By harnessing this catabolic potential, it is possible to bioremediate some chemically contaminated environmental systems. Composting matrices and composts are rich sources of xenobiotic-degrading microorganisms including bacteria, actinomycetes and lignolytic fungi, which can degrade pollutants to innocuous compounds such as carbon dioxide and water. These microorganisms can also biotransform pollutants into less toxic substances and/or lock up pollutants within the organic matrix, thereby reducing pollutant bioavailability. The success or failure of a composting/compost remediation strategy depends however on a number of factors, the most important of which are pollutant bioavailability and biodegradability. This review discusses the interactions of pollutants with soils; look critically at the clean up of soils contaminated with a variety of pollutants using various composting strategies and assess the feasibility of using composting technologies to bioremediate contaminated soil.  相似文献   

2.
Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.  相似文献   

3.
Persistent organic pollutants (POPs) are within the most dangerous pollutants released into the environment by human activities. Due to their resistance to degradation (chemical, biological or photolytic), it is critical to assess the fate and environmental hazards of the exchange of POPs between different environmental media.System Dynamics enables to represent complex systems and analyze their dynamic behavior. It provides a highly visual representation of the structure of the system and the existing relationships between the several parameters and variables, facilitating the understanding of the behavior of the system. In the present study the fate of γ-hexachlorocyclohexane (lindane) in a contaminated soil was modeled using the Vensim® simulation software.Results show a gradual decrease in the lindane content in the soil during a simulation period of 10 years. The most important route affecting the concentrations of the contaminant was the biochemical degradation, followed by infiltration and hydrodynamic dispersion. The model appeared to be highly sensitive to the half-life of the pollutant, which value depends on environmental conditions and directly affects the biochemical degradation.  相似文献   

4.
Five bioassays (inhibition of lettuce germination and growth, earthworm mortality, inhibition of springtail population growth, avoidance by springtails) were compared, using four coke factory soils contaminated by PAHs and trace elements, before and after biotreatment. For each bioassay, several endpoints were combined in an ‘ecoscore’, a measure of test sensitivity. Ecoscores pooled over all tested bioassays revealed that most organisms were highly sensitive to the concentration of 3-ring PAHs. When four soils were combined, behavioural tests using the springtail Folsomia candida showed higher ecoscores, i.e. they were most sensitive to soil contamination. However, despite overall higher sensitivity of behavioural tests, which could be used for cheap and rapid assessment of soil toxicity, especially at low levels of contamination, some test endpoints were more sensitive than others, and this may differ from a soil to another, pointing to the need for a battery of bioassays when more itemized results are expected.  相似文献   

5.
土壤有机物污染控制标准制订的方法学研究   总被引:1,自引:0,他引:1  
指出了中国现行土壤环境质量标准存在的问题.对日本和美国等发达国家的有机物污染土壤质量控制标准进行了分析.从土壤环境质量基准制订的方法学和污染控制标准的确定原则上,提出了制订中国土壤有机物污染控制标准的建议.  相似文献   

6.
Hexachlorocyclohexanes (HCHs) were produced and used in large quantity worldwide and are common soil pollutants. In this study, desorption of α-HCH and γ-HCH from two soil samples collected from a historical pesticide plant in Tianjin, China, was examined. As a comparison, desorption of freshly sorbed γ-HCH was examined, using five typical Chinese soils. Strong resistant desorption was observed for both historically contaminated and freshly contaminated soils, and desorption results were well modeled with a biphasic desorption isotherm. The unique thermodynamic characteristics associated with the desorption-resistant fraction indicated that physical constraint within soil organic matrices was likely the predominant mechanism controlling resistant desorption. Resistant desorption could have significant effects on fate and exposure of HCHs in soil environment. More accurate biphasic desorption models that take into account of the resistant desorption can be used to facilitate regulating, management and remediation of HCH-contaminated sites.  相似文献   

7.
Metal phytoextraction with hyperaccumulating plants could be a useful method to decontaminate soils, but it is not fully validated yet. In order to quantify the efficiency of Cd and Zn extraction from a calcareous soil with and without Fe amendment and an acidic soil, we performed a pot experiment with three successive croppings of Thlaspi caerulescens followed by 3 months without plant and 7 weeks with lettuce. We used a combined approach to assess total extraction efficiency (2 M HNO3-extractable metals), changes in metal bio/availability (0.1 M NaNO3-extractable metals and lettuce uptake) and toxicity (lettuce biomass and the BIOMET biosensor). The soil solution was monitored over the whole experiment. In the calcareous soil large Cu concentrations were probably responsible for chlorosis symptoms observed on T. caerulescens. When this soil was treated with Fe, the amount of extracted metal by T. caerulescens increased and metal availability and soil toxicity decreased when compared to the untreated soil. In the acidic soil, T. caerulescens was most efficient: Cd and Zn concentrations in plants were in the range of hyperaccumulation and HNO3-extractable Cd and Zn, metal bio/availability, soil toxicity, and Cd and Zn concentrations in the soil solution decreased significantly. However, a reduced Cd concentration measured in the third T. caerulescens cropping indicated a decrease in metal availability below a critical threshold, whereas the increase of dissolved Cd and Zn concentrations after the third cropping may be the early sign of soil re-equilibration. This indicates that phytoextraction efficiency must be assessed by different approaches in order not to overlook any potential hazard and that an efficient phytoextraction scheme will have to take into account the different dynamics of the soil-plant system.  相似文献   

8.
Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100 g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l’Environnement et des Parcs for the Province of Québec, Canada.The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg0 particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H2-supercritical CO2 that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al2O3.In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility.  相似文献   

9.
Methoxychlor was found to be sufficiently persistent in soil and its residues were present even 18 months after the soil treatment. Saprophytes, fungi and actinomyces were unaffected by varying concentrations of methoxychlor, azotobacter however was susceptable. Soil strains isolated did not utilize methoxychlor as a sole carbon source except for 9 cultures belonging to the genera Bacillus, Acinetobacter and Rhodococcus which carried out the complete dechlorination, demethylation and splitting of one of methoxychlor aromatic rings. Anaerobic conditions were more favorable for methoxychlor biodegradation by soil and pure microbial cultures.  相似文献   

10.
Abstract

Methoxychlor was found to be sufficiently persistant in soil and its residues were present even 18 months after the soil treatment. Saprophytes, fungi and actinomyces were unaffected by varying concentrations of methoxychlor, azotobacter however was susceptable. Soil strains isolated did not utilize methoxychlor as a sole carbon source except for 9 cultures belonging to the genera Bacillus, Acineto‐bacter and Rhodococcus which carried out the complete dechlorination, demethylation and splitting of one of methoxychlor aromatic rings. Anaerobic conditions were more favorable for methoxychlor biodegradation by soil and pure microbial cultures.  相似文献   

11.
Speciation of zinc in contaminated soils   总被引:1,自引:0,他引:1  
The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn(2+), soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K(d)) for Zn ranged from 17 to 13,100Lkg(-1) soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn(2+) varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn(2+), dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils.  相似文献   

12.
The presence of antimony compounds is often suspected in the soil of apple orchards contaminated with lead arsenate pesticide and in the soil of shooting ranges. Nitric acid (1M) extractable Sb from the shooting range (8300 microg kg(-1)) and the apple orchard (69 microg kg(-1)) had considerably higher surface Sb levels than the control site (<1.5 microg kg(-1)), and Sb was confined to the top approximately 30 cm soil layer. Sb(V) was the principal species in the shooting range and the apple orchard surface soils. Size exclusion chromatography-inductively coupled plasma-mass spectrometry (SEC-ICP-MS) analysis of humic acids isolated from the two contaminated soils demonstrated that Sb has complexed to humic acid molar mass fractions. The results also indicate that humic acids have the ability to arrest the mobility of Sb through soils and would be beneficial in converting Sb(III) to a less toxic species, Sb(V), in contaminated areas.  相似文献   

13.

Introduction  

The effect of the glass industry on urban soil metal characterization was assessed in the area of Firozabad, India. A comprehensive profile of metal contamination was obtained in five zones each containing five specific sites.  相似文献   

14.
Abstract

Polycyclic Aromatic Hydrocarbons (PAHs) are among the environmental pollutants that have very high carcinogenic and mutagenic activity. Among hundreds of different PAHs, 17 are considered priority pollutants and routinely monitored for regulatory purposes. Extended periods of exposure and expensive clean-up costs are typically associated with the vast majority of processes used for the remediation of areas contaminated with PAHs. The results of this study indicate that bioremediation via vermicomposting could be an effective method for remedying soils contaminated with toxic organic compounds, such as PAHs. This study was conducted over 90?days in the presence of various quantities of organic matter (cattle manure) to recover soils contaminated with PAHs. High-performance liquid chromatography (HPLC) was applied to identify PAHs. An evaluation of the toxicity of the final material and the transformation of the organic matter throughout the process was also conducted. The data presented here suggest a relationship between the molar mass of the PAHs and the ability of the vermicomposting process to promote biodegradation. These results suggest that vermicomposting has great potential to be utilized as a tool for the bioremediation of soils impacted by PAHs.  相似文献   

15.
Multi-step leaching of Pb and Zn contaminated soils with EDTA   总被引:3,自引:0,他引:3  
Finzgar N  Lestan D 《Chemosphere》2007,66(5):824-832
The efficiency of multi-step leaching of heavy metal contaminated soils was evaluated in a laboratory scale study. Four different soils contaminated with Pb (1136+/-16-4424+/-313mgkg(-1)) and Zn (288+/-5-5489+/-471mgkg(-1)) were obtained from industrial sites in the Mezica Valley, Slovenia and Príbram district, Czech Republic. Different dosages (2.5-40mmolkg(-1)) of ethylenediamine tetraacetate (EDTA) were used to treat soils in 1-10 leaching steps. Higher EDTA dosages did not result in a proportional gain in Pb and Zn removal. EDTA extracted Pb more efficiently than Zn from three of four tested soils. The percentage of removed Zn did not exceed 75% regardless of the soil, EDTA dosage and leaching steps. Significantly more Pb (in three of four soils) and Zn were removed from soils when the same amount of EDTA was applied in several leaching steps. The interference of major soil cations Fe and Ca with EDTA complexation as a possible factor affecting Pb and Zn removal efficiency with multi-step heap leaching was examined and is discussed. The results of our study indicate that, for some soils, using multi-step leaching instead of the more traditionally used single dose EDTA treatment could improve heavy metal removal efficiency and thus the economics of soil remediation.  相似文献   

16.
The distribution of heavy metal contaminated sediments in Foundry Cove, a freshwater embayment of the Hudson River, was examined twelve years after the discharging of wastes from a battery factory had ceased. Concentrations of Cd, Ni and Co were measured in surficial sediments (top 5 cm) and seven detailed depth profiles. Comparison with earlier surveys showed that metal levels of surficial sediments have been considerably reduced throughout the cove. Evidence suggests that this reduction may be largely due to burial rather than transport of metals out of the cove or a redistribution (via sediment resuspension and redeposition) within the cove. This is suggested by the presence of a peak in metal concentrations at a depth of several centimetres in depositional environments, a calculation showing the loss of waterborne cadmium to be much less than the amount of cadmium lost from the surficial sediment, and the absence of increased pollution in the cleaner parts of the cove. Despite improvement, metal levels remain extremely high, including a persistent 'hot-spot' with levels higher than 10 000 ppm Cd.  相似文献   

17.
通过土柱实验研究垃圾渗滤液污染地下氧化还原环境的分带现象与污染物的衰减规律.实验结果表明:垃圾渗滤液污染晕中出现了3个顺序氧化还原带,依次为铁还原带、硝酸盐还原带和氧还原带,各带标志性物质Fe3 、NO-2和O2的最高质量浓度分别为14.81、1.41、5.8 mg/L;COD与NH 4-N在监测区间内呈现出相似的衰减规律,随距离的增加浓度降低,随时间的推移浓度升高,COD初期最高去除率达76.8%,后期降到50.0%;NH 4-N初期最高去除率达98.1%,后期降到90.2%.  相似文献   

18.
The wide-spread use of pesticides in modern agriculture has created a need to investigate the chemical transformation of pesticides in plants and animals. This paper reviews the chemical and biochemical fate of various pesticides and other xenobiotics. Photochemical mechanisms appear to be the most common pathways for the abiotic transformation of these chemicals. Biotic transformation includes a large group of biochemical reactions which may result in either deactivation (detoxication) or activation (toxication) of bioactive compounds. The need for quality control in the production of pesticides is also discussed.  相似文献   

19.
Wong MH 《Chemosphere》2003,50(6):775-780
This paper reviews the ecological aspects of mined soil restoration, with special emphasis on maintaining a long-term sustainable vegetation on toxic metal mine sites. The metal mined soils are man-made habitats which are very unstable and will become sources of air and water pollution. Establishment of a vegetation cover is essential to stabilize the bare area and to minimize the pollution problem. In addition to remediate the adverse physical and chemical properties of the sites, the choice of appropriate vegetation will be important. Phytostabilization and phytoextraction are two common phytoremediation techniques in treating metal-contaminated soils, for stabilizing toxic mine spoils, and the removal of toxic metals from the spoils respectively. Soil amendments should be added to aid stabilizing mine spoils, and to enhance metal uptake accordingly.  相似文献   

20.
Abstract

The wide‐spread use of pesticides in modern agriculture has created a need to investigate the chemical transformation of pesticides in plants and animals. This paper reviews the chemical and biochemical fate of various pesticides and other xenobiotics. Photochemical mechanisms appear to be the most common pathways for the abiotic transformation of these chemicals. Biotic transformation includes a large group of biochemical reactions which may result in either deactivation (detoxication) or activation (toxication) of bioactive compounds. The need for quality control in the production of pesticides is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号