首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
天津城区春季大气气溶胶消光特性研究   总被引:8,自引:0,他引:8       下载免费PDF全文
利用天津大气边界层观测站2011年4月1日~5月10日气溶胶散射系数、吸收系数、PM2.5质量浓度、大气能见度和常规气象观测数据,分析了气溶胶散射系数和吸收系数的变化特征,以及气溶胶消光系数与PM2.5质量浓度和大气能见度的关系,并对两种方法计算的消光系数进行了比较.结果表明,观测期间天津城区气溶胶散射系数为369.93 Mm-1,对大气消光贡献为86.7%,气溶胶吸收系数为36.32 Mm-1,对大气消光贡献为8.5%,单次散射反照率为0.91;气溶胶散射系数和吸收系数的日变化特征具有明显的双峰结构,对应于早晚交通高峰;不同天气类型下其日分布特征存在较大差异,霾日散射系数和吸收系数最高,沙尘日和降水日次之,晴日最低;气溶胶散射系数和吸收系数与PM2.5质量浓度呈线性正相关,与大气能见度呈指数负相关,观测期间气溶胶质量散射效率均值为2.95m2/g;采用Koschmieder’s公式反算能见度获得的大气消光系数,与通过测量气溶胶散射系数、气溶胶吸收系数、气体散射系数和气体吸收系数等分量加和获得的消光系数相比一致性较好,高相对湿度天气下能见度反算值高于各系数加和值.  相似文献   

2.
杭州大气颗粒物散射消光特性及霾天气污染特征   总被引:7,自引:6,他引:1  
徐昶  叶辉  沈建东  孙鸿良  洪盛茂  焦荔  黄侃 《环境科学》2014,35(12):4422-4430
2011年7月~2012年6月期间,对大气散射系数、颗粒物浓度及气象因子进行同步观测,以评估颗粒物散射消光对杭州市大气能见度的影响.结果表明,杭州市大气颗粒物散射系数日均值变化范围为108.4~1 098.1 Mm-1,年均值为428.62Mm-1±200.2 Mm-1.散射系数呈明显的季节变化,秋冬高,夏季低.日变化呈典型的双峰型,早峰出现在08:00,晚峰出现在21:00.PM2.5和PM10的散射效率分别为7.6 m2·g-1和4.4 m2·g-1,颗粒物散射消光占总消光比例的90.2%.灰霾和重度灰霾天气下,散射系数分别为684.4 Mm-1±218.1 Mm-1和1 095.4 Mm-1±397.7 Mm-1,达到非霾天气的2.6和4.2倍,表明颗粒物散射消光作用是导致杭州市大气能见度下降和灰霾天气发生的主要因素.  相似文献   

3.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

4.
济南秋季霾与非霾天气下气溶胶光学性质的观测   总被引:12,自引:2,他引:10       下载免费PDF全文
应用黑碳仪和积分浊度计于2009年10月11日至11月18日针对济南市大气气溶胶的光学特性进行了观测.结果显示,观测期间霾天气的散射系数和吸收系数及非霾天气的散射系数和吸收系数平均值分别为(582.5±311)Mm-1、(680.2±47.2)Mm-1和(205.7±134.8)Mm-1、(31.0±25.8)Mm-1.霾天气的气溶胶散射系数和吸收系数分别为非霾天气的2.6倍和2.8倍,单词散射反照率(SSA)也高于非霾天气.霾天气中二次气溶胶生成及黑碳气溶胶聚集是改变吸收系数、散射系数和SSA的日变化趋势的重要原因.此外,估算了观测期间及霾和非霾天气中气溶胶的光学厚度(AOD)分别为0.78,1.14和0.47.后向气流轨迹分析显示,非霾天气的气流主要来自于济南的西北至东北方向,运动速度快;而霾天气的所有的气流均来自于济南西南至东南方向,运动速度慢,当气流经过山东南部的火点时加剧了济南市的霾,并严重影响到该地区大气气溶胶的光学性质.  相似文献   

5.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

6.
北京地区大气消光特征及参数化研究   总被引:7,自引:6,他引:1  
陈一娜  赵普生  何迪  董璠  赵秀娟  张小玲 《环境科学》2015,36(10):3582-3589
为了研究大气消光系数的特征及规律,从2013~2014年在北京地区对大气能见度、气溶胶质量浓度、气溶胶散射系数、黑碳质量浓度、反应性气体以及气象要素开展了系统加强观测,并对已发表的气溶胶光散射吸湿增长因子[f(RH)]拟合方案进行了对比,系统分析了大气消光特征和影响大气消光能力的关键因子,最终建立了大气消光系数参数化模型,探讨不同季节、不同污染条件下参数化方案的特征.结果表明,气溶胶散射作用占环境总消光作用的94%以上,在夏秋季,相对湿度可以使气溶胶的散射能力提升70%~80%.包含气溶胶质量浓度和相对湿度两个因子的参数化模型,可以较好地体现出气溶胶和相对湿度对大气消光系数的影响机制,以及消光能力的季节差异.  相似文献   

7.
气象条件对上甸子地区气溶胶散射特征的影响   总被引:5,自引:3,他引:2  
赵秀娟  张小玲  蒲维维  孟伟 《环境科学》2011,32(11):3153-3159
利用北京地区上甸子站气溶胶散射系数、PM2.5质量浓度和气象要素1 a的观测资料,研究不同天气条件下上甸子地区散射系数的变化特征,并讨论了气象条件对散射系数的影响.结果表明,散射系数在雾霾天最高608.4 Mm-1,其次为雾天500.6 Mm-1和霾天423.7 Mm-1,是一般天气散射系数的6.4~9.2倍.在各类天...  相似文献   

8.
黄聪聪  马嫣  郑军 《环境科学》2018,39(7):3057-3066
2016年1月1~19日在南京北郊利用三波长光声黑碳光度仪(PASS-3)对气溶胶的光学性质进行了实时在线观测,同时结合气溶胶化学组成分析了黑碳气溶胶的光吸收增强效应.结果表明,观测期间气溶胶在532 nm下的吸收系数、散射系数、单散射反照率的平均值为(64.19±35.28)Mm-1、(454.68±238.71)Mm-1、0.87±0.03,受边界层高度及颗粒物浓度的影响,呈现出明显的日变化特征.黑碳气溶胶的质量吸收截面(MAC)在观测期间的变化趋势为前期低,后期高,与非EC组分相对EC比值的变化趋势一致,受不同污染条件下二次物质的占比及覆盖物厚度变化的影响.基于MAC计算得到的405、532、781nm下的光吸收增强(EMAC)平均值分别为1.53±0.56、1.34±0.47、1.14±0.40,随着波长增加而降低,存在棕色碳(Br C)的贡献.各非EC组分相对EC的比值与EMAC均有一定相关性,其中OC/EC与EMAC相关性最高,说明有机物的积累是导致黑碳光吸收增强的主要原因.K+/EC与EMAC的高相关性表明生物质燃烧过程对光吸收增强也有一定影响.  相似文献   

9.
气溶胶的复折射指数是直接影响其散射特性和吸收特性的基本物理量之一.为深入研究城市大气气溶胶的复折射指数特征,引入一种具有高时间分辨率优点的反演方法来反演气溶胶复折射指数.依据辐射传输理论,将天津大气边界层观测站观测到的高精度散射系数、吸收系数和数浓度谱分布数据利用查表法代入Mie理论气溶胶粒子群消光计算公式,对大气气溶胶复折射指数进行反演.结果表明:①天津城区2011年4月观测地点0.55 μm波长处的气溶胶复折射指数实部平均值为1.64,虚部平均值为0.015.②气溶胶复折射指数实部和虚部均有明显日变化规律,实部和虚部均与相对湿度呈正相关,与风速呈负相关.③利用反演得到的复折射指数对不同粒径大气气溶胶的消光特性进行计算发现,对散射特性而言,>0.25~1.00 μm粒子对散射系数的贡献率达86%;对吸收特性而言,>0.25~2.50 μm粒子对吸收系数的贡献率为53%,>2.50~32.00 μm粒子对吸收系数的贡献率为47%.研究显示,>0.25~1.00和>1.00~32.00 μm的粒子对吸收系数的贡献率均较高,但对散射系数而言,>0.25~1.00 μm的粒子贡献率较高,因此综合考虑气溶胶散射系数、吸收系数和消光系数,控制>0.25~1.00 μm的气溶胶粒子数浓度可有效改善大气能见度.   相似文献   

10.
杭州市区大气气溶胶吸收系数观测研究   总被引:2,自引:0,他引:2       下载免费PDF全文
利用2011年6~8月和2011年12月~2012年2月杭州国家基准气候站内黑碳及气象观测资料,分析了杭州市区气溶胶吸收系数的变化特征.结果表明,杭州市区气溶胶吸收系数冬季[(42.3±17.7)Mm-1]要高于夏季[(35.8±10.5)Mm-1],且冬季气溶胶吸收系数变化较为剧烈.在边界层变化以及人类活动的共同影响下,气溶胶吸收系数呈现明显的双峰型日变化特征,峰值出现在07:00~09:00,谷值出现在14:00,次峰值出现在19:00~20:00.通过拟合小时平均值最大出现频率得出该地区气溶胶吸收系数本底值为24.7Mm-1.霾时气溶胶吸收系数要高于非霾时,随着霾污染的加重,气溶胶吸收系数呈现阶梯上升趋势.霾期间气溶胶吸收系数的增加是造成能见度下降的重要原因之一.  相似文献   

11.
天津市冬季颗粒物化学组成及其消光特征   总被引:2,自引:0,他引:2       下载免费PDF全文
于2013年冬季在天津大气边界层观测站利用Andersen撞击式采样器采集了26 d的颗粒物样品,并进行化学组分分析,同步观测颗粒物吸收系数、数浓度、能见度及其他气象要素. 对比分析了污染日和清洁日颗粒物质量浓度及其化学组成的粒径分布特征,在此基础上,利用Mie模型计算外混、内混、“核-壳” 3种混合态假设下颗粒物的消光系数、散射系数和吸收系数. 与实测吸收系数的比较可知,颗粒物的混合态可能更加接近“核-壳”态. “核-壳”态假设下颗粒物平均消光系数模拟值为(517.44±308.42)Mm-1,其中污染日平均值为(668.39±307.30)Mm-1,清洁日为(275.91±37.90)Mm-1,相对湿度对颗粒物的消光系数有显著影响. 污染日颗粒物中OM(有机质)、(NH4)2SO4、NH4NO3、EC和其他物质对消光系数的贡献率分别为30.4%、25.5%、17.7%、8.1%和18.3%,清洁日分别为49.8%、11.0%、7.2%、10.6%和21.4%. PM0.4~1.1、PM>1.1~2.1、PM>2.1~10的消光系数贡献率分别为69.6%±6.7%、13.9%±3.3%和16.5%±6.4%. 污染日高浓度的细粒子是导致能见度下降的主要原因,其中亚微米颗粒物对消光占据主导地位,(NH4)2SO4、NH4NO3、OM是主要的消光化学组分.   相似文献   

12.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

13.
黄山夏季气溶胶光学特性观测分析   总被引:2,自引:0,他引:2       下载免费PDF全文
袁亮  银燕  于兴娜  肖辉  文彬 《中国环境科学》2013,33(12):2131-2139
利用2011年6~8月黄山光明顶气溶胶光学参数的观测资料,分析了气溶胶各光学参数的逐日变化和非降水条件下日变化特征,并结合Hysplit后向轨迹模式,探讨了不同气团影响下气溶胶光学参数的变化特征.结果表明:黄山光明顶气溶胶消光作用以散射为主,观测期间气溶胶散射系数(σsc)、吸收系数(σab)、单次散射反照率(SSA)和后向散射比(BSR)的平均值(标准差)分别为62.59(49.17) Mm-1、5.49(3.67) Mm-1、0.89(0.04)和0.13(0.02);各光学特征量具有明显日变化特征.σsc、σab和SSA白天高,夜间低, BSR则相反,边界层活动是影响光明顶气溶胶光学性质日变化的主要因素.聚类分析结果显示光明顶主要受西北方大陆性气团、西南方大陆性气团以及东南方海洋性气团的影响.不同气团影响下,气溶胶光学参数有很大差异,其中北方大陆性气团影响下的σab、σsc和SSA最大,东南方海洋性气团影响下最小,表明大陆性气团传输过程中二次气溶胶生成的影响较为明显.  相似文献   

14.
杭州黑碳气溶胶污染特性及来源研究   总被引:5,自引:0,他引:5  
2011年7月~2012年6月对黑碳气溶胶(BC)、PM2.5、污染气体及气象因子进行同步观测,以评估杭州市BC污染特征、来源分布及对大气能见度的影响.结果表明:杭州市大气BC日均浓度范围为1.3~16.5μg/m3,年均值达到(5.1±2.5)μg/m3.BC呈明显的季节变化趋势,秋冬季高,夏季低.BC也呈典型的日变化趋势,交通高峰期高,下午低,同时与NOx呈较好的相关性,表明城市中BC受到机动车尾气排放的重要影响;而BC/CO低于其他城市则表明生物质燃烧排放可能是杭州BC的另一大重要来源.BC随风速下降呈上升趋势, BC超过10μg/m3的高浓度事件中,风速基本低于2m/s,北-西北-西风对高浓度BC的输送作用明显.观测期间BC的吸收系数为(44.8±23.0)Mm-1,占到总消光比例的10.4%.灰霾和重度灰霾天气下,吸收系数分别为(66.2±30.1),(100.2±49.2)Mm-1,达到非霾天气的2.2和3.4倍, 表明BC吸收消光作用是影响杭州市大气能见度下降和灰霾天气发生的重要因素之一.  相似文献   

15.
北京雾霾天气期间气溶胶光学特性   总被引:28,自引:11,他引:17  
为了解北京地区雾霾天气条件下大气气溶胶的光学特性,利用2002~2008年AERONET资料分析了雾霾天气期间气溶胶光学厚度、Angstrom波长指数、粒子尺度谱分布和单次散射反照率等气溶胶光学特性参数.结果表明,北京地区雾霾天气期间气溶胶光学厚度表现出较高值,且随波长增大而减小,440 nm时平均气溶胶光学厚度达到1.34.Angstrom波长指数在雾霾天气时也表现出较高值,平均值达到1.11;其中高于0.9的波长指数出现频率达到94%,说明北京雾霾天气期间气溶胶粒子主要以细粒子为主.气溶胶体积尺度谱分布表现出双峰型结构,细模态的平均峰值半径随光学厚度增大而增大,而粗模态的平均峰值半径却随光学厚度增大表现出减小趋势;气溶胶粒子尺度谱中的主模态峰与光学厚度有关.雾霾天气期间平均单次散射反照率达到0.89,且随光学厚度增大表现出依次增大趋势,但对波长变化表现不敏感.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号