首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The solution culture, paddy soil culture and the simulation experiments in the laboratory were conducted to clarify the interactions between selenium and phosphorus, and its effects on the growth and selenium accumulation in rice. Results revealed that a suitable supply of selenium could promote rice growth and excessive selenium could injure rice plant, causing lower biomass, especially in the roots. The supply of selenite could enhance the selenium contents of rice shoots and roots in solution culture and in soil culture. The selenium concentrations in roots were much higher than those in shoots supplied with the same rates of selenium and phosphorus. The interaction between selenium and phosphorus was evident. When the phosphorus supply increased to meet the needs of plant growth, phosphorus could promote absorption and accumulation of selenium in the shoots. If the phosphorus supply was excessive, phosphorus could inhibit the accumulation of selenium in the shoots at the lower selenite level (2 mol l–1), but could not at the higher selenite level (10 mol l–1). With the supply of phosphate increased, the selenium concentrations in the roots decreased significantly at both selenite levels. The presence of phosphate could decrease Se sorption on the soil surface and increase the selenium concentration in the soil solution. The concentrations of selenium in shoots and roots supplied with 0.08 g kg–1 phosphorus were lower than those with no phosphorus supplied. With the increase of phosphorus added to 0.4 g kg–1, the selenium concentration in shoots and roots increased. The effect of phosphorus on the concentration was statistically significant at all three selenium levels.  相似文献   

2.
Pot culture studies were conducted to examine the effect of selenite (SeO3(2-)) and selenate (SeO4(2-)) on the uptake and translocation of root absorbed selenium in maize Zea mays plants grown in sand and soil culture. Increasing selenium supplementation (0.5-6.00 microg/ml), increased the selenium retention in roots, but there was little transfer of selenium from shoot to grains. The study indicates that selenite species (less mobile) also accumulates in maize plants when supplied in solution form. Selenium does not cause any adverse effect on the maize plants (dry matter yield vs concentration, no significant correlation, p>0.05).  相似文献   

3.
钒对水稻生长的影响--溶液培养研究   总被引:6,自引:0,他引:6  
通过水培试验 ,研究钒对水稻的毒害及钒与磷相互作用的影响 .试验结果表明 ,低浓度钒对水稻生长没有显著影响 ,但是随着钒浓度的不断增加 ,对水稻的干物质重量和根系生长均不利 .如钒浓度为 1 2 8mg·l- 1 时 ,水稻茎叶和根系的干重分别比不施钒的对照减少 49 9%和 5 5 1 % ,钒浓度愈高植株干重愈少 ,根系生长不良 ,表现出明显的钒中毒症状 .水稻茎叶及根系中磷的含量与钒的含量均呈极显著的负相关关系 .随着溶液中钒浓度的增加 ,水稻茎叶及根系吸收的钒量逐渐增加 ,而吸收的磷量却呈下降趋势 ,说明水稻钒毒害可抑制其对磷的吸收  相似文献   

4.
The current study investigated the effects of nano-silicon (Si) and common Si on lead (Pb) toxicity, uptake, translocation, and accumulation in the rice cultivars Yangdao 6 and Yu 44 grown in soil containing two different Pb levels (500 mg·kg−1 and 1000 mg·kg−1). The results showed that Si application alleviated the toxic effects of Pb on rice growth. Under soil Pb treatments of 500 and 1000 mg·kg−1, the biomasses of plants supplied with common Si and nano-Si were 1.8%–5.2% and 3.3%–11.8% higher, respectively, than those of plants with no Si supply (control). Compared to the control, Pb concentrations in rice shoots supplied with common Si and nano-Si were reduced by 14.3%–31.4% and 27.6%–54.0%, respectively. Pb concentrations in rice grains treated with common Si and nano-Si decreased by 21.3%–40.9% and 38.6%–64.8%, respectively. Pb translocation factors (TFs) from roots to shoots decreased by 15.0%–29.3% and 25.6%–50.8%, respectively. The TFs from shoots to grains reduced by 8.3%–13.7% and 15.3%–21.1%, respectively, after Si application. The magnitudes of the effects observed on plants decreased in the following order: nano-Si treatment>common Si treatment and high-grain-Pb-accumulating cultivar (Yangdao 6)>low-grain-Pb-accumulating cultivar (Yu 44) and heavy Pb stress (1000 mg·kg−1)>moderate Pb stress (500 mg·kg−1)>no Pb treatment. The results of the study indicate that nano-Si is more efficient than common Si in ameliorating the toxic effects of Pb on rice growth, preventing Pb transfer from rice roots to aboveground parts, and blocking Pb accumulation in rice grains, especially in high-Pb-accumulating rice cultivars and in heavily Pb-polluted soils.  相似文献   

5.
Hydroponic experiments were conducted to investigate the role of iron plaque on root surface in chromium accumulation and translocation in three rice cultivars (90-68-2, CDR22 and Jin 23A). Rice seedlings were grown under 1.0 mg L?1 trivalent chromium (Cr(III)) stress with and without phosphorus (P) treatments. P addition significantly increased the shoot and root biomass in all three rice cultivars. In the absence of P, the amounts of iron plaque (DCB-extractable Fe) on the root surface increased resulting in the increase of Cr accumulation in iron plaque. Compared to that with P treatment, Cr concentrations in iron plaque without P treatment were enhanced by 2–3 folds in the three rice cultivars. There was a significantly positive correlation between DCB-extractable Cr and DCB-extractable Fe on the root surface of the three rice cultivars. There were no significant effects on Cr concentration in roots and shoots between P treatments, but significant differences among cultivars were observed. Cultivar Jin 23A had the lowest Cr concentration both in roots and shoots regardless of P treatment. The results suggest that iron plaque could be a trap for immobilising Cr from environment but may not affect Cr uptake and translocation. Screening and breeding the cultivars with low Cr accumulation is considered as the most effective approach in Cr contaminated areas.  相似文献   

6.
矿冶区周边水稻对不同来源重金属污染的指示作用   总被引:4,自引:1,他引:4  
有色金属开采与冶炼可对周边环境造成严重的重金属污染,查明重金属污染来源对于矿冶周边重金属污染管理与控制具有重要意义.为探索利用矿冶周边水稻对As、Cd、Pb、Zn和Cu的富集与水稻体内元素的含量平衡特征指示重金属污染来源的可行性,选择了我国著名的水口山Pb-Zn矿山开采与冶炼周边区,根据重金属污染排放和迁移扩散特征,结合当地气象和地貌条件,确定了3个典型采样区,其中两个采样区分别邻近冶炼厂和尾砂库,另一处为位于两者之间的过渡区.采用蛇形采样法在稻田内采集33个成熟水稻及土壤样品,分析水稻不同部位(包括根、茎叶、籽粒)及土壤中As、Cd、Pb、Zn、Cu5种重金属和其他16种元素的含量.结果表明,3个采样区之间土壤中的As、Cd、Pb、Zn和Cu含量均存在显著性差异;各采样区水稻中除根际和籽粒中Cd含量外,各部位重金属含量也均有显著差异.靠近冶炼厂的水稻茎叶中As、Pb含量高于离冶炼厂较远的采样区水稻茎叶.尽管As、Pb在靠近尾砂库采样区土壤中含量最高,但在该区水稻茎叶中的含量却最低;在除As、Cd、Pb、Zn、Cu5种重金属以外的其他16种元素中,水稻根部仅有5种元素含量在各采样区之间存在差异,指示相同的土地利用类型及土壤母质条件;而在茎叶和籽粒中则分别有多达11和10种元素含量出现采样区差异,指示重金属污染来源影响水稻茎叶及籽粒中元素的含量平衡.多元统计分析结果显示,3个采样区水稻茎叶中元素含量平衡存在显著的分异,显示出明显的采样区属性.结合采样区域空间位置、污染物来源、水稻对重金属的富集与转运特征分析,3个采样区重金属主要污染特征可分别确定为水-气混合来源型、大气来源型和尾砂来源型.论文结果证明利用水稻茎叶指示矿冶周边重金属污染来源是可行的.  相似文献   

7.
叶面喷施硒硅复合溶胶抑制水稻砷积累效应研究   总被引:11,自引:0,他引:11  
砷是一种毒性较强的类金属元素,稻米砷污染是近年来环境科学关注的难点和热点问题。为了控制稻米对砷的吸收积累,利用水热合成法制备了一系列浓度硒掺杂硅复合溶胶。采用盆栽和大田试验结合的方法,研究了硒掺杂纳米硅溶胶对水稻(Oryza sativa L.)砷吸收积累的影响。结果显示,叶面喷施硒掺杂纳米硅溶胶可以有效缓解水稻砷毒害,增加稻米硒含量,抑制稻米砷积累。盆栽试验结果表明:叶面喷施质量分数1%的硒掺杂纳米硅溶胶(1%Se-Si处理)后,水稻籽粒干质量比对照增加了43.8%,砷含量下降了46%,硒含量由对照的0.050 mg·kg-1增加到0.272 mg·kg-1。且与喷施亚硒酸钠相比(1%Se处理),喷施硒掺杂纳米硅溶胶更有利于水稻生长,抑制稻米砷积累。与喷施硒质量分数1%的亚硒酸钠(1%Se处理)相比,喷施质量分数1%的硒掺杂纳米硅溶胶(1%Se-Si处理)后,水稻籽粒干质量增加了65.4%,砷含量下降了33.1%。大田试验结果也表明:叶面喷施硒硅复合溶胶可以显著抑制稻米砷积累,且随着硒掺杂量的增加,稻米砷含量显著降低、硒含量显著增加;硒的最佳掺杂量质量分数为0.5%,叶面喷施这种硒掺杂硅溶胶,稻米总砷质量分数由对照的0.25 mg·kg-1下降到0.14 mg·kg-1,稻米中硒的质量分数为0.26 mg·kg-1,符合富硒大米标准。砷污染稻田上,叶面喷施硒硅复合溶胶不仅使稻米砷含量达标,而且可以生产出富硒大米。因此,叶面喷施硒硅复合溶胶可能是治理稻米砷污染的新途径。  相似文献   

8.
用土柱模拟4种加硒处理的土壤还原淋溶过程,研究了硒在土壤中的迁移和积累。结果表明,未加硒处理(土壤背景硒)的溶液中硒的迁移以有机硒占优势,Se(Ⅵ)及Se(Ⅳ)占的比例很小;土壤富野酸硒由上层向下层迁移。外源蛋白硒的处理的溶液中硒迁移为有机硒,部分外源硒以富里酸硒积累在下层土壤。外源Se(Ⅵ)和Se(Ⅳ)处理的溶液中硒迁移量只占加入量的0.2%和0.4%,硒迁移的主要形态前者为有机硒,后者为Se(Ⅳ)和有机硒;外源Se(Ⅵ)和Se(Ⅳ)的绝大部分以富里酸硒的形态积累于土壤,其积累量Se(Ⅵ)处理高于Se(Ⅳ)处理,上层土壤高于下层土壤。  相似文献   

9.
We investigated the extractability of nickel (Ni) in serpentine soils collected from rice paddy fields in eastern Taiwan to evaluate the bioavailability of Ni in the soils as well as for demonstrating the health risks of Ni in rice. Total Ni concentrations in the soils ranged were 70.2–2730 mg/kg (mean, 472 mg/kg), greatly exceeding the natural background content and soil control standard in Taiwan. Available Ni concentration only accounts for <10% of total soil Ni content; 0.1 N HCl-extractable Ni was the more suitable index for Ni bioavailability in the soil to rice than was diethylenetriaminepentaacetic acid (DTPA)-extractable Ni. The accumulation ability of rice roots was much higher than that of its shoots; however, compared with those reported previously, our brown and polished rice samples contained much higher Ni concentrations, within the ranges of 1.50–4.53 and 2.45–5.54 mg/kg, respectively. On the basis of the provisional tolerable Ni intake for adults recommended by the World Health Organization (WHO), daily consumption of this rice can result in an excessive Ni intake.  相似文献   

10.
Effects of cadmium on nutrient uptake and translocation by Indian Mustard   总被引:3,自引:0,他引:3  
Plants that hyperaccumulate metals are ideal subjects for studying the mechanisms of metal and mineral nutrient uptake in the plant kingdom. Indian Mustard (Brassica juncea) has been shown to accumulate moderate levels of Cd, Pb, Cr, Ni, Zn, and Cu. In this experiment, 10 levels of Cd concentration treatments were imposed by adding 10-190 mg Cd kg(-1) to the soils as cadmium nitrate [Cd(NO3)2]. The effect of Cd on phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and the micronutrients iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn) in B. juncea was studied. Plant growth was affected negatively by Cd, root biomass decreased significantly at 170 mg Cd kg(-1) dry weight soils treatment. Cadmium accumulation both in shoots and roots increased with increasing soil Cd treatments. The highest concentration of Cd was up to 300 mg kg(-1) d.w. in the roots and 160 mg kg(-1) d.w. in the shoots. The nutrients mainly affected by Cd were P, K, Ca, Fe, and Zn in the roots, and P, K, Ca, and Cu in the shoots. K and P concentrations in roots increased significantly when Cd was added at 170 mg kg(-1), and this was almost the same level at which root growth was inhibited. Zn concentrations in roots decreased significantly when added Cd concentration was increased from 50 to 110 mg kg(-1), then remained constant with Cd treatments from 110 to 190 mg kg(-1). However, Zn concentrations in the shoots seemed less affected by Cd. It is possible that Zn uptake was affected by the Cd but not the translocation of Zn within the plant. Ca and Mg accumulation in roots and shoots showed similar trends. This result indicates that Ca and Mg uptake is a non-specific process.  相似文献   

11.
汞、砷复合污染对水稻生长及吸收汞、砷的影响   总被引:3,自引:1,他引:2  
在温室条件下,采用水培方法研究汞、砷复合污染对水稻的生长及对汞、砷吸收的影响.实验结果表明:1)汞、砷复合污染可以显著地降低水稻生物量,汞、砷具有显著的交互作用.2)营养液中汞浓度大于0.5mg·L-1时,可显著降低水稻光合速率、二氧化碳气孔导度、蒸腾速率(p<0.001),而砷的影响不显著.3)随营养液中汞浓度的增加,水稻根部和地上部汞含量显著增加,砷对水稻吸收汞的影响不显著,二者无交互作用.随营养液中砷浓度的增加,砷在水稻根部和地上部的累积显著提高,营养液中的汞显著抑制了水稻根部对砷的吸收,二者表现为拮抗作用;而汞对砷在水稻地上部累积的影响则较复杂,随着汞浓度由0.5mg·L-1增加到1.5mg·L-1,水稻地上部砷含量表现出先降低再升高的趋势.  相似文献   

12.
采用溶液培养的方法探讨根表铁膜形成对水稻吸收积累和转运稀土元素Ce的影响。结果表明,Ce污染胁迫可抑制水稻根表铁膜的形成,根表铁膜吸附的Ce量随着溶液中Ce浓度的提高而增加。根表铁膜形成可降低水稻根系但提高水稻茎叶对Ce的吸收积累。当溶液中Ce浓度为0.1、0.5和1.0 mmol·L~(-1)时,铁膜诱导组水稻根系Ce含量分别比非诱导组水稻根系Ce含量降低38.60%、45.94%和32.75%,诱导组水稻茎叶Ce含量分别比非诱导组水稻茎叶Ce含量提高42.37%、28.87%和22.62%。根表铁膜形成可影响Ce在水稻植株中的富集和转运能力。非诱导组水稻根系富集Ce的能力远大于茎叶。诱导组水稻根系对Ce的富集能力最强,其次是根表铁膜,最后是水稻茎叶。诱导组水稻根系Ce转运系数显著大于非诱导组的根系,说明根表铁膜形成可促进水稻根部Ce向茎叶中转运。可见,根表铁膜对水稻吸收转运稀土元素的影响机理比较复杂。  相似文献   

13.
小麦根系菲与磷吸收及转运的相互作用   总被引:1,自引:0,他引:1  
作物根系对多环芳烃(PAHs)与磷吸收及转运之间的相互作用研究对农产品的安全生产和PAHs污染环境植物修复的强化具有重要意义。为此,本文以菲为PAHs的代表,采用水培试验研究了不同磷、菲水平下小麦根系菲、磷吸收及其转运的效果,旨在揭示植物根系吸收PAHs与磷素的相互作用。结果表明,在0~1 200μmol·L~(-1)磷浓度范围内,小麦根系、茎叶菲含量在低磷浓度(10μmol·L~(-1))时最高,分别为36.87 mg·kg~(-1)和2.07 mg·kg~(-1);磷含量总体呈现随磷处理浓度的升高而增大的趋势;成对数据t-检验显示无论加菲与否,根系、茎叶磷含量无显著性差异(P0.05)。磷可促进菲从根部向地上部转运,而菲对磷转运没有显著性影响。在低磷浓度下(10μmol·L~(-1)),随着菲浓度的升高,小麦根系、茎叶菲含量呈现显著升高趋势(P0.05)。磷、菲共存处理介质pH升高幅度大于单一处理。  相似文献   

14.
A pot experiment was carried out in a greenhouse to investigate the sequestration of As in iron plaques on root surface of three rice (Oryza sativa L.) cultivars. Phosphate (P) fertilization increased both plant biomass and tissue P concentrations significantly, indicating that the soils used in this study was highly P-deficient. Results from this study confirmed that low P supply improved the formation of iron plaque on rice roots. As a consequence, arsenic (As) concentrations in DCB-extracts with no P addition were significantly higher than those with P fertilization. Arsenic was highly sequestrated in iron plaque; arsenic concentration in iron was up to nearly 120 mg kg−1, while arsenic concentrations in roots were just several mg kg−1. Both arsenic and phosphate concentrations in iron plaque were highly positively correlated with the amounts of iron plaque (DCB-extractable Fe). Contrary to normal understanding that increasing P supply could reduced As accumulation in plants, results from the present study showed that P fertilization did not inhibit the As uptake by plants (As accumulation in aboveground), which was probably due to the fact that iron plaque formation was improved under low P conditions, thus leading to more As sequestration in the iron plaque. Thus results obtained in this study indicated that the iron plaque may inhibit the transfer of As from roots to shoots, and thus alter the P–As interaction in plant As uptake processes.  相似文献   

15.
为探索缓解水稻砷毒害的农艺措施,以耐低磷水稻99011和低磷敏感水稻99012为材料,通过土培试验,研究水分、磷用量及其交互作用对不同砷浓度酸性土壤中水稻根表铁膜以及植物体内砷分配的影响。结果表明,节水灌溉(干湿交替)明显减少水稻根表铁膜量,降低铁膜、根系、秸秆、颖壳和精米中的砷含量。与30mg·kg-1P2O5相比,180mg·kg-1P2O5能明显减少两个品种水稻的根表铁膜量以及根系和秸秆中的砷含量;对耐低磷品种铁膜砷含量影响不大,但显著降低磷敏感品种铁膜砷含量;在50mg·kg-1砷处理中增加磷用量对水稻颖壳砷含量影响不大,在100mg·kg-1砷处理时能显著降低颖壳砷含量;增加磷用量可明显增加耐低磷品种的精米砷含量,降低磷敏感品种的精米砷含量。水、磷交互效应主要受水分效应的影响。加砷处理后,相同处理下耐低磷品种的根表铁膜量和铁膜中的砷含量显著高于磷敏感品种,而根系、秸秆、颖壳和精米中的砷含量则相反。研究表明,可以通过节水灌溉,并根据砷污染程度和植物磷营养特性确定适当的磷肥用量,从而减少砷在水稻体内的累积,提高食品安全。  相似文献   

16.
The effects of normal vanadate (V) supply (40 μM) on copper (Cu) accumulation, plant growth and reduction in Cu toxicity in wheat seedlings (Triticum aestivum L.) were investigated. The results showed Cu accumulation (mg g?1 dw) in the applied V treatment was about 10.2 % in shoots and 16.7 % in roots higher up on exposure to excess Cu (300 μM) than that observed only in excess Cu plants. Compared with the treatment of the normal concentration used in Hoagland’s culture solution Cu (0.6 μM), excess Cu significantly induced lipid peroxidation indicated by accumulation of thiobarbituric acid reactive substances (MDA). The seedlings showed apparent symptoms of Cu toxicity and plant growth were significantly inhibited by excess Cu. The applied V significantly decreased lipid peroxidation in roots caused by excess Cu and inhibited the appearance of Cu toxicity symptoms. Moreover, the applied V effectively improved the antioxidant defense system to alleviate the oxidative damage induced by Cu. Although the addition of V could promote superoxide dismutase in both shoots and roots to reduce superoxide radicals, peroxidase and catalase in shoots and ascorbate peroxidase and dehydroascorbate reductase in roots were major enzymes to eliminate H2O2 in wheat seedlings.  相似文献   

17.
根表铁锰膜对不同生育期水稻吸收和转运As的影响   总被引:3,自引:0,他引:3  
采用土壤盆栽试验法,研究不同生育期水稻根表铁锰膜形成及其对As吸收和转运的影响。结果表明,两个水稻品种YD6和NK57均在分蘖期形成的铁锰膜量最多,成熟期形成的铁锰膜量最少。水稻根系和茎叶吸收积累As随着水稻不同品种和不同生育期变化较大,As的吸收和积累与铁锰膜形成存在相关性。与分蘖期相比,YD6和NK57成熟期根系As含量分别减少81.6%和62.1%。孕穗期YD6和NK57茎叶As含量分别比分蘖期减少86.4%和65.5%,比成熟期减少87.8%和67.1%。分蘖期水稻根系和茎叶As含量与DCB-Fe或DCB-Mn浓度均呈显著的负相关关系,而孕穗期水稻根系和茎叶As含量与DCB-Fe浓度呈显著的正相关关系,说明不同生育期铁锰膜对水稻植株吸收和转运As的影响不同。两个水稻品种不同生育期,As均主要富集和分配在根表铁锰膜中,铁锰膜中As的分配比率达62.9%~84.9%。NK57从根表铁锰膜、根系和茎叶向籽粒转运As的能力比YD6强,籽粒中As含量是YD6的2.1倍。结果表明可以通过选育As低积累和低转运的水稻品种,来降低污染地区As对人体健康的威胁。  相似文献   

18.
采用土壤盆栽试验法,研究6个不同基因型水稻品种根表铁膜形成及其对As吸收、转运的影响。结果表明,水稻形成根表铁膜在不同基因型品种之间差异显著(p<0.001),其中品种94D-22形成铁膜量(以Fe含量计)是品种圭630的1.5~1.8倍,添加As处理对水稻根表铁膜形成影响不显著。低As含量的对照土壤中,水稻根表铁膜量与根系As含量存在着显著的正相关关系(r=0.657,n=24,p<0.01),与As转移系数呈显著的负相关关系(r=-0.612,n=24,p<0.01)。土壤添加As后,水稻根表铁膜量与茎叶As含量存在显著的正相关关系(r=0.653-0.673,n=24,p<0.01),与As转运之间无显著相关性。比较生长于As污染土壤的不同水稻品种,科优1360茎叶积累As较少,且其根系转运As能力也较差,而品种94D-22正好相反。研究结果表明,在As含量较低的土壤中,水稻根表铁膜的存在可成为根系As的障碍层,阻止As向地上部转运;但在As含量较高的土壤,根表铁膜的存在却促进了水稻茎叶对As的积累,其对As的转运没有显著影响。人们可通过作物品种筛选来防治土壤As污染危害、降低As对人体健康的威胁。  相似文献   

19.
选取3个耐低磷水稻基因型99011、580和99112及1个磷敏感基因型99056为材料,采用营养液培养,比较了它们在不同磷水平下苗期根系的生长状况及对氮、磷、钾的吸收情况,结果表明,耐低磷基因型适应低磷的能力较强,它们具有较长的根系、较大的根体积和根干重,其中99011和580表现尤为突出,且它们的根系受磷水平变化的影响明显小于敏感基因型99056;0.081~0.161mmol/L的磷处理更有利于耐低磷基因型根系的发育,并且促进氮和钾的吸收,此时,植株能够吸收较正常磷处理更多的氮和钾;而磷敏感基因型99056吸收氮和钾的量随供磷水平的下降而减少,并且吸收磷的总量受磷水平变化的影响显著较3个耐低磷基因型大。  相似文献   

20.
茄子苗对镉积累和耐性的品种间差异   总被引:1,自引:0,他引:1  
通过盆栽实验方法研究了13种茄子幼苗对镉(Cd)积累与耐性的品种间差异。结果表明,这些茄子幼苗根及地上部Cd含量均随土壤中外加Cd的量的增加而提高。品种间存在着显著差异(P<0.05),其中Cd含量最高品种根部和地上部的Cd含量分别为Cd含量最低品种的2.1、2.4倍(2mg·kg-1Cd处理组)和1.5、1.6倍(4mg·kg-1Cd处理组)。不同品种幼苗对Cd的富集系数均大于1,表现出较强的富集能力。但转运系数均小于1,Cd从根部向地上部转移能力较弱,大多数品种间差异不大。当Cd添加量为2mg·kg-1时,只有绿龙长茄地上部生物量显著下降(P<0.05)。当Cd添加量提高到4mg·kg-1时,6个品种地上部生物量显著下降(P<0.05),这些品种对Cd的耐性较弱。综合评价,辽茄三号对Cd积累的含量最低,富集系数和转移系数也较低,对Cd具有较强的耐性,具有Cd低积累特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号