共查询到18条相似文献,搜索用时 46 毫秒
1.
SBR中厌氧颗粒污泥向好氧颗粒污泥的转化 总被引:15,自引:10,他引:15
在SBR反应器中以醋酸钠为碳源,UASB厌氧颗粒污泥作为接种污泥,在好氧曝气条件下运行.通过观察污泥颗粒形态、结构等的变化,发现在运行中污泥颗粒经历了形态保持,成分置换的过程.污泥浓度先增加后降低,在运行35 d后逐渐稳定在5g/L,SVI值稳定在30~40mL/g的水平.在40~60d内反应器中颗粒污泥一直占主体成分,悬浮相浓度低于0.5g/L.在好氧条件下最终颗粒污泥形态、大小稳定,表明好氧颗粒污泥已经成功获得,好氧颗粒污泥与接种污泥相比在粒径、沉降速度、含水率以及惰性成分的含量上都有一定的变化.电镜观察还表明,原厌氧颗粒污泥中的微生物以球菌为主,而获得的好氧颗粒污泥中的微生物以丝状菌和杆菌为主. 相似文献
2.
采用厌氧颗粒污泥为接种污泥,在SBR反应器内培养好氧颗粒污泥,并对其微观特征进行了研究。COD负荷为1.5kg/m3·h~1.8kg/m3·h,表面气体流速在0.0052m/s之间,沉淀时间控制在10~8min时,有利于好氧颗粒污泥的形成。20d后完成好氧颗粒污泥的驯化和培养。研究发现培养的好氧颗粒污泥微生物相以杆菌和丝状菌为主,球菌较少。用扫描电子显微镜(SEM)观察好氧颗粒污泥的微观结构,颗粒污泥具有不平整的表面,轮廓清晰,表面有薄层粘液覆盖并有绒毛状结构。颗粒污泥表面和内部有明显的孔洞或孔隙。研究结果表明,好氧颗粒污泥具有良好的有机物降解能力和同步硝化反硝化能力。 相似文献
3.
概述了好氧污泥颗粒的关键培养技术及研究进展.迄今,只有在SBR反应器中通过控制运行条件,才能在常规条件下成功培养出好氧颗粒污泥.好氧颗粒污泥的形成和培养受很多因素的影响,其关键培养技术至今仍不清楚.沉降时间、交换比、溶解氧、剪切力、进水负荷和进料方式是比较重要的关键培养参数. 相似文献
4.
预加好氧颗粒对SBR中好氧颗粒污泥形成的影响 总被引:3,自引:2,他引:3
以活性污泥曝气池中的絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,通过观测颗粒形态和粒径的变化,研究预先加入15%成熟好氧颗粒污泥对好氧颗粒污泥形成过程的影响.对比研究发现,2个反应器内小颗粒(0.1~0.3 cm)的形成均较快,但大颗粒的形成速度相差明显.培养过程中还能明显观察到丝状菌缠绕和絮状污泥黏附在小颗粒表面.反应器启动第1、7、14 d,污泥平均体积粒径分别从0.10、0.16 cm上升到0.23、0.30 cm,最终达到0.28、0.43 cm.研究结果表明,预先加入15%成熟好氧颗粒污泥,能加速好氧颗粒污泥在反应器内形成. 相似文献
5.
预加好氧颗粒对SBR中好氧颗粒污泥形成的影响 总被引:1,自引:2,他引:1
以活性污泥曝气池中的絮状活性污泥为接种污泥,采用人工配制的模拟生活污水,通过观测颗粒形态和粒径的变化,研究预先加入15%成熟好氧颗粒污泥对好氧颗粒污泥形成过程的影响.对比研究发现,2个反应器内小颗粒(0 .1~0 .3 cm)的形成均较快,但大颗粒的形成速度相差明显.培养过程中还能明显观察到丝状菌缠绕和絮状污泥黏附在小颗粒表面.反应器启动第1、7、14 d,污泥平均体积粒径分别从0 .10、0 .16 cm上升到0 .23、0 .30 cm,最终达到0 .28、0 .43 cm.研究结果表明,预先加入15%成熟好氧颗粒污泥,能加速好氧颗粒污泥在反应器内形成. 相似文献
6.
实验考察两种接种污泥——絮状活性污泥和厌氧颗粒在膜生物反应器(MBR)中培养好氧颗粒污泥过程中理化特性的差异,实验结果表明:好氧颗粒污泥均以丝状菌交织构成网状框架结构,球菌、杆菌穿插其间,并且外围附着一些原、后生动物;由厌氧颗粒污泥形成的好氧颗粒表面结构比由絮状污泥形成的好氧颗粒污泥表面结构更加规则致密。由絮状污泥和厌氧颗粒污泥培养成熟的好氧颗粒污泥平均粒径分别为1.3mm和1.5mm,它们的粒径比较接近,但都小于厌氧颗粒污泥。两种好氧颗粒污泥的SVI值75mL/g,沉降速度都随粒径的增大而增大,范围为25~89m/h,都具有良好的沉降性能。两种接种污泥在MBR反应器中培养好氧颗粒污泥的过程中,MLVSS的增殖率均先为负值,然后逐渐上升变成正值,并且在好氧颗粒成熟后稳定在一定的水平。 相似文献
7.
在SBR反应器中以好氧颗粒和絮状活性污泥的混合污泥为接种污泥,分两阶段进行好氧颗粒污泥的培养.第一阶段在3个SBR反应器中分别接种10%、15%和20%的颗粒;第二阶段在3个反应器中分别接种未经筛分、粒径≤1 mm和粒径>1mm的颗粒,接种比例均为20%.在培养过程中对各反应器中污泥形态、粒径变化、完全颗粒化时间以及有机物的降解能力进行了比较研究并对快速培养的作用机制进行了探讨.结果表明,第一阶段培养,接种比例为20%的反应器完全颗粒化时间较短,仅为24 d;第二阶段培养,接种未经筛分颗粒的反应器完全颗粒化时间较短,仅为30 d.两次培养的好氧颗粒均具有良好的沉降性能和去污效果,SVI稳定在40 mL.g-1以下,COD去除率保持在90%以上.预加好氧颗粒后好氧颗粒的形成过程分为两个阶段:好氧颗粒加速解体阶段和好氧颗粒解体与快速形成阶段. 相似文献
8.
进料负荷调控培养好氧颗粒污泥的试验研究 总被引:9,自引:4,他引:9
采用厌好氧交替的SBR反应器,以进料负荷(即进水浓度)作为主要控制参数,研究了好氧颗粒污泥的关键培养技术.结果表明,在30 min的较长污泥沉降时间下,通过进料COD 0~900 mg·L-1的负荷调控,可以有效控制反应器内污泥生长.初始接种污泥的沉降性能对颗粒污泥产生很重要,SVI值保持在20~50 mg·L-1才能有助于颗粒污泥形成和培养.应用“空曝”这种强力负荷调控方式可大大改善污泥沉降性能,并促进颗粒污泥的形成.通过进料减负荷运行可很好实现污泥的“完全颗粒化”培养.颗粒化转变出现在进料浓度COD 400~500 mg·L-1,污泥浓度约8~10 g·L-1.“完全颗粒化”污泥的性能优异,粒径约1.0 mm,SVI值25~35 mg·L-1,最大沉降速率60 m·h-1.污泥颗粒过程的发生可能决定于SBR的独特间歇式运行,即基质浓度的贫富交替,减负荷运行可强化基质贫富交替并增大颗粒化过程的驱动力. 相似文献
9.
10.
为探究粉末活性炭和钙离子的投加对污泥颗粒化进程的影响,在300 L SBR(序批式反应器)中接种普通絮状污泥,投加1.0 g/L粒径约75 μm的PAC(粉末活性炭)及35 mg/L的Ca2+以促进污泥颗粒化进程,并研究其稳定运行特性.结果表明:常温下反应器在14 d内开始形成具有良好沉降性能的AGS(好氧颗粒污泥),至第18天污泥颗粒化程度达到80.0%左右;在此后运行的100 d内,AGS基本能保持其结构完整性.同时,反应器内ρ(MLSS)(污泥浓度)由接种时的3 300 mg/L升至4 050 mg/L,污泥SVI(体积指数)由接种时的120 mL/g变为35 mL/g.w(PS)(PS为胞外多糖)较少且变化量小;w(PN)(PN为胞外蛋白)在反应器启动及稳定运行阶段内都在提高,最终达到240 mg/g(以每gMLVSS中含PS的质量计),PN/PS(质量比)最终稳定在15.00左右.稳定运行期间,反应器对污水中CODCr、TN、TP的平均去除率分别达到82.0%、76.5%和96.0%.研究显示,投加的PAC与普通絮状污泥间的吸附作用,促进了污泥的颗粒化进程;同时,PAC作为AGS的惰性成核物质,避免了AGS因内源呼吸从颗粒内部解体,提高了AGS的稳定性. 相似文献
11.
采用序批式活性污泥法(Sequencing Batch Reactor,SBR),通过接种絮状污泥研究逐级改变进水组成(配水与实际生活污水的比例)实现好氧颗粒污泥快速培养,同时考查了好氧颗粒污泥培养过程中颗粒污泥的物理性质及对污染物的去除效果。结果表明:在好氧颗粒污泥培养初期通过添加营养物质并逐渐增加实际生活污水的比例可以实现好氧颗粒污泥的快速培养,与完全用配水培养的好氧颗粒污泥基本相似,且培养出的好氧颗粒污泥结构密实,湿密度为1.046 g/cm3,比重为1.025,平均沉降速度为38.67 m/h,粒径在1 mm左右,颜色为黄褐色;同时培养的颗粒污泥对污染物有较好的处理效果,COD、NH+4-N的去除率分别高达85%、90%。培养初期在实际生活污水中通过添加营养物质能够诱导好氧颗粒污泥形成,实现好氧颗粒污泥的快速培养。 相似文献
12.
13.
14.
15.
16.
17.
18.
以厌氧颗粒污泥为接种污泥在膜生物反应器中培养好氧颗粒污泥,通过对3个培养阶段污泥生长情况的考察,研究了颗粒污泥的变化规律及特性.结果表明:污泥在培养初期MLSS和SV均增长缓慢,污泥沉降性能较差,但到成熟期ρ(MLSS)可以达到8 g·L-1左右,SV和SVI也由接种时的11.4%,34.9 mL·g-1增为42%,52.9 mL·g-1,整个培养过程只用了60 d.此外,颗粒污泥的表观性状及颗粒粒径在不同的时期也有鲜明的特征. 相似文献