首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fate of hydrophobic organic pollutants in the aquatic environment is controlled by a variety of physical, chemical and biological processes. Some of the most important are physical transport, chemical and biological transformations, and distribution of these compounds between the various environmental compartments (atmosphere, water, sediments and biota). The major biogeochemical processes that control the fate of hydrophobic organic compounds in the aquatic environment are reviewed. These processes include evaporation, solubilization, interaction with dissolved organic matter, sediment-water partitioning, bioaccumulation and degradation. Physico-chemical parameters used to predict the aquatic fate of such compounds are also discussed.  相似文献   

2.
Determining water movement through contaminated sediment is critical for characterizing transport of chemicals from the sediment to the overlying water. Field studies to characterize the water flow across the sediment-water interface within a river adjacent to a former manufactured gas plant site were conducted. For this purpose, a new design of an interfacial flow meter was developed and tested. The in situ components of the system consisted of: a cylinder with an interfacial area of 2342 cm2; a dome attached to the cylinder; and a flow tube that allows water to flow from inside the dome to the river at the rate equal to the specific discharge across the sediment-water boundary. A 'heat-pulse' method was used to measure flow by heating the center of the flow tube for a brief time period and measuring the temperature profile within the tube over time. The system was calibrated to measure volumetric flux in the range 1.5-4.0 cm d(-1), however using a flow-addition method, the measurement of lower velocities also was accomplished, and calibration at higher fluxes is possible. From the groundwater flow at the interface of the coal-tar impacted sediment and information on the sediment pore water concentrations of several PAHs (poly-cyclic aromatic hydrocarbons), the mass flux of these PAHs to the river were estimated. Information on PAH mass flux at the sediment-water interface is useful for site assessment, including the evaluation of remediation alternatives and longer term site characterization.  相似文献   

3.
A great number of studies on the ambient levels of formaldehyde and other carbonyls in the urban rural and maritime atmospheres have been published because of their chemical and toxicological characteristics, and adverse health effects. Due to their toxicological effects, it was considered necessary to measure these compounds at different sites in the metropolitan area of Mexico City, and to calculate the total rate of photolytic constants and the photolytic lifetime of formaldehyde and acetaldehyde. Four sites were chosen. Sampling was carried out at different seasons and atmospheric conditions. The results indicated that formaldehyde was the most abundant carbonyl, followed by acetone and acetaldehyde. Data sets obtained from the 4 sites were chosen to calculate the total rate of photolysis and the photolytic lifetime for formaldehyde and acetaldehyde. Maximum photolytic rate values were obtained at the maximum actinic fluxes, as was to be expected.  相似文献   

4.
Photodegradation of chlorothalonil was studied in different natural waters (sea, river and lake) as well as in distilled water under natural and simulated solar irradiation. The effect of dissolved organic matter (DOM) such as humic and fulvic substances on the photodegradation rate of chlorothalonil was also studied in simulated sunlight. The presence of DOM enhanced the photodegradation of chlorothalonil with the exception of seawater. The kinetics were determined through gas chromatography electron capture detection (GC/ECD) and the photodegradation proceeds via pseudo-first-order reaction in all cases. Half-life ranged from 1 to 48 h. In natural and humic water chlorothalonil photodegradation gave rise to two different intermediates compared to distilled water demonstrating that the transformation of chlorothalonil depend on the constitution of the irradiated media and especially from DOM. The byproducts identified by GC/MS techniques were: chloro-1,3-dicyanobenzene, dichloro-1,3-dicyanobenzene, trichloro-1,3-dicyanobenzene and benzamide.  相似文献   

5.
Liu S  Li QX 《Chemosphere》2004,56(11):1121-1127
Spinosad, a reduced-risk insecticide, contains primarily two active compounds, spinosyns A and D that are fermentation products of bacterium Saccharopolyspora spinosa. It is currently used to control fruit flies in Hawaii, USA. In this study, we investigated photodegradation of spinosyns A and D, respectively, in seawater, stream, tap and distilled-deionized waters under various light sources. Photodegradation of the two chemicals was also studied in various aqueous solutions prepared with phosphate buffer at different pH or chemical sensitizers. Two major photolytic products from spinosyn A were detected as spinosyn B and hydroxylated spinosyn A. Spinosyn D was similarly hydroxylated and N-demethylated. Spinosyns A and D were photodegraded rapidly under sunlight in Hawaii, USA. The half-life of spinosyns A and D in stream water was 1.1 and 1.0 h, respectively, and was a half of that in distilled-deionized water, 2.2 and 2.0 h, respectively. Photodegradation of spinosyns A and D followed an order of increasing rate constants in distilled-deionized, seawater, stream and tap water under 300 nm artificial light, and was enhanced approximately 8- and 17-fold, respectively, in acetone-sensitized solution as compared to in distilled-deionized water. Photolysis rates of spinosyns A and D in isopropanol- or humic acid-fortified water did not differ much as compared with those accordingly in distilled-deionized water. Spinosyns A and D photodegraded slower in acidic aqueous solution than in basic aqueous solution.  相似文献   

6.
For flowing water bodies no information is available about patterns of contaminant distribution in flowing water compared to macrophyte-dominated structures. The aim of the study was to examine temporal dynamic and spatial cross-channel variability of pulse exposure of the insecticide thiacloprid in outdoor stream mesocosms. Two distinct cross-channel sections have been considered: macrophyte-dominated littoral and non-vegetated midstream. Median disappearance time ranged from 17 to 43 h (water phase, midstream). We showed that during the exposure pulse (10h) thiacloprid concentrations in the macrophyte-dominated section were 20-60% lower than those in the non-vegetated section. This suggests that spatial variability in contaminant concentrations, particularly in streams containing macrophytes, should be taken into account to enable a more realistic assessment of (i) exposure and associated effects and (ii) mass transport of pesticides and other chemicals into river systems (e.g. losses with surface runoff).  相似文献   

7.
Ongoing deliberations on the regulation of semivolatile organic chemicals require the assessment of chemical transport in atmospheric and marine systems. The characteristic travel distance was proposed as a measure for the transport potential in air and water. However, the existing definition treats the transport processes separately. It is shown that combined transport in coupled air-ocean systems can accelerate the overall transport into remote regions. Concentration ratios in air and water change with distance from sources depending on the initial concentration ratio and on the difference between the transport velocities. A measure is suggested facilitating the chemical screening with respect to transport potentials in such air-ocean systems. A case study for alpha and gamma-hexachlorocyclohexane shows that the suggested measure qualitatively reveals the transport potentials of these chemicals and exemplifies possible concentration patterns.  相似文献   

8.
Keskinen M 《Ambio》2008,37(3):193-198
The Mekong River Basin is facing rapid changes, including intensive plans for water development. While the different development projects are considered to be important for economic development, the negative impacts that they are likely to cause for ecosystems and livelihoods are estimated to be remarkable. Yet, existing impact assessment processes seem in many cases to be inadequate to capture even the actual magnitude of the impacts at different levels. This article looks at the different impact assessment processes and their challenges in the basin. It is argued that impact assessment in this kind of dynamic and complex setting requires better coordination between assessments at different levels. Basinwide impact assessment would benefit from a more adaptive, multilevel approach that makes better use of assessments from local levels up to the regional level and builds on more participatory and interdisciplinary methods. Successful impact assessment also requires the recognition of the highly political nature of water development and related planning processes.  相似文献   

9.
This paper presents a global sensitivity and uncertainty analysis of the bromine chemistry included in the Model of Aqueous, Gaseous and Interfacial Chemistry (MAGIC) in dark and photolytic conditions. Uncertainty ranges are established for input parameters (e.g. chemical rate constants, Henry's law constants, etc.) and are used in conjunction with Latin hypercube sampling and multiple linear regression to conduct a sensitivity analysis that determines the correlation between each input parameter and model output. The contribution of each input parameter to the uncertainty in the model output is calculated by combining results of the sensitivity analysis with input parameters' uncertainty ranges. Model runs are compared using the predicted concentrations of molecular bromine since Br2(g) has been shown in previous studies to be generated via an interface reaction between O3(g) and Br(surface)? during dark conditions [Hunt et al., 2004]. Formation of molecular bromine from the reaction of ozone with deliquesced NaBr aerosol: evidence for interface chemistry. Journal of Physical Chemistry A 108, 11559–11572]. This study also examines the influence of an interface reaction between OH(g) and Br(surface)? in the production of Br2(g) under photolytic conditions where OH(g) is present in significant concentrations. Results indicate that the interface reaction between O3(g) and Br(surface)? is significant and is most responsible for the uncertainty in MAGICs ability to calculate precisely Br2(g) under dark conditions. However, under photolytic conditions the majority of Br2(g) is produced from a complex mechanism involving gas-phase chemistry, aqueous-phase chemistry, and mass transport.  相似文献   

10.
Navia R  Inostroza X  Diez MC  Lorber KE 《Chemosphere》2006,63(8):1242-1251
An irrigation process through volcanic soil columns was evaluated for bleached Kraft mill effluent pollutants retention. The system was designed to remove color and phenolic compounds and a simple kinetic model for determining the global mass transfer coefficient and the adsorption rate constant was used. The results clearly indicate that the global mass transfer coefficient values (K(c)a) and the adsorption rate constants are higher for the irrigation processes onto acidified soil. This means that the pretreatment of washing the volcanic soil with an acid solution has a positive effect on the adsorption rate for both pollutant groups. The enhanced adsorption capacity is partially explained by the activation of the metal oxides present in the soil matrix during the acid washing process. Increasing the flow rate from 1.5 to 2.5 ml/min yielded higher (K(c)a) values and adsorption rate constants for both pollutant groups. For instance, regarding color adsorption onto acidified soil, there is an increment of 43% in the (K(c)a) value for the experiment with a flow rate of 2.5 ml/min. Increasing the porosity of the column from 0.55 to 0.59, yielded a decrease in the (K(c)a) values for color and phenolic compounds adsorption processes. Onto natural soil for example, these decreases reached 21% and 24%, respectively. Therefore, the (K(c)a) value is dependent on both the liquid-phase velocity (external resistance) and the soil fraction in the column (internal resistance); making forced convection and diffusion to be the main transport mechanisms involved in the adsorption process. Analyzing the adsorption rate constants (K(c)a)/m, phenolic compounds and color adsorption rates onto acidified soil of 2.25 x 10(-6) and 2.62 x 10(-6) l/mg min were achieved for experiment 1. These adsorption rates are comparable with other adsorption systems and adsorbent materials.  相似文献   

11.
Koelmans AA  Jonker MT 《Chemosphere》2011,84(8):1150-1157
It is unknown whether carbonaceous geosorbents, such as black carbon (BC) affect bioturbation by benthic invertebrates, thereby possibly affecting sediment-water exchange of sediment-bound contaminants. Here, we assess the effects of oil soot on polychlorinated biphenyl (PCB) mass transfer from sediment to overlying water, for sediments with and without tubificid oligochaeta as bioturbators. PCB levels were so low that toxicity to the oligochaeta played no role, whereas soot levels and binding affinity of PCBs to soot were so low that pore water PCB concentrations were not significantly affected by binding of PCBs to soot. This setup left direct effects of BC on bioturbation activity as the only explanation for any observed effects on mass transfer. Mass transfer coefficients (KL) for benthic boundary layer transport were measured by a novel flux method using Empore™ disks as a sink for PCBs in the overlying water. For the PCBs studied (logKow 5.2-8.2), KL values ranged from 0.2 to 2 cm × d−1 in systems without tubificids. Systems with tubificids showed KL values that were a factor of 10-25 higher. However, in the presence of oil soot, tubificids did not cause an increase in mass transfer coefficients. This suggests that at BC levels as encountered under field conditions, the mechanism for reduction of sediment-water transfer of contaminants may be twofold: (a) reduced mass transfer due to strong binding of the contaminants to BC, and (b) reduced mass transfer of contaminants due to a decrease in bioturbation activity.  相似文献   

12.
Several predictive models were used to assess aquatic exposure, persistence (P) and potential for long-range transport (LRT) of 5-ethylidene-2-norbornene (ENB). Such estimations are components of the assessment process for persistent, bioaccumulative and toxic (PBT) substances, which are also referred to as persistent organic pollutants (POPs). An ecological exposure assessment for ENB from manufacturing activities was conducted based on physical/chemical properties, monitoring data, and degradation, transport and distribution estimates. Based on the results of several model predictions, chronic exposure of aquatic organisms is not expected, due to the anticipated residence time of ENB in aquatic ecosystems. These modeled results consistently predict ENB does not present the potential to persist in the environment. Volatilization from water to the air is calculated to occur at a relatively rapid rate for ENB based on its Henry's Law constant. Once in the air, ENB is expected to degrade rapidly due to oxidation by hydroxyl radicals and ozone based on calculated atmospheric half-lives of 57 and 27 min, respectively. Additionally, ENB is not predicted to undergo long-range transport based on the short atmospheric half-life due to oxidation by hydroxyl radicals and ozone. Additionally, based on predicted exposure from site-specific emission using the EPA model EFAST, ENB is not expected to reach concentrations of concern for chronic aquatic toxicity endpoints.  相似文献   

13.
Abstract

The hydrolysis of the insecticide tebufenozide was studied in the dark at 20 to 40°C in buffered (pH 4 to 10) distilled water, and at 20°C in unbuffered, sterilized and unsterilized stream water. Tebufenozide was very stable in acidic and neutral buffers at 20°C and the corresponding pseudo‐first‐order rate constants (kobsd) and half‐lives (T1/2) were 5.946 × 10‐4 and 13.10 × 10‐4 d‐1, and 1166 and 529 d, respectively. The hydrolytic degradation was dependent on pH and temperature. At pH 10 and at 20,30 and 40°C, the kobsd (10‐4 d‐1) and T1/2 (d) values were 34.22, 66.72 and 130.0; and 203, 104 and 53.3, respectively. The energy of activation (Ea) values for the hydrolysis of tebufenozide at pH 4, 7 and 10, calculated from the Arrhenius plots, were 83.50, 66.71 and 50.87 kJ/mol, respectively. Tebufenozide was stable in sterilized stream water in the dark (T1/2 = 734 d) but it degraded fairly rapidly in unsterilized stream water (T1/2 = 181 d). Sunlight photodegradation of the chemical was slower (T1/2 = 83.0 h) than the photolysis by ultraviolet radiations (T1/2 values at 254 and 365 nm were 9.92 and 27.6 h, respectively); nevertheless, it was still appreciable during the summer months at 46°31’ N latitude. The differences in degradation rates between the unsterilized and sterilized stream water and the degradation of the chemical in the sterile, distilled water in sunlight, suggests that microbial processes and photolysis are the two main degradative routes for tebufenozide in natural aquatic systems.  相似文献   

14.
Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.  相似文献   

15.
The relative biomass of autotrophs (vascular plants, macroalgae, microphytobenthos, phytoplankton) in shallow aquatic ecosystems is thought to be controlled by nutrient inputs and underwater irradiance. Widely accepted conceptual models indicate that this is the case both in marine and freshwater systems. In this paper we examine four case studies and test whether these models generally apply. We also identify other complex interactions among the autotrophs that may influence ecosystem response to cultural eutrophication. The marine case studies focus on macroalgae and its interactions with sediments and vascular plants. The freshwater case studies focus on interactions between phytoplankton, epiphyton, and benthic microalgae. In Waquoit Bay, MA (estuary), controlled experiments documented that blooms of macroalgae were responsible for the loss of eelgrass beds at nutrient-enriched locations. Macroalgae covered eelgrass and reduced irradiance to the extent that the plants could not maintain net growth. In Hog Island Bay, VA (estuary), a dense lawn of macroalgae covered the bottom sediments. There was reduced sediment-water nitrogen exchange when the algae were actively growing and high nitrogen release during algal senescence. In Lakes Brobo (West Africa) and Okeechobee (FL), there were dramatic seasonal changes in the biomass and phosphorus content of planktonic versus attached algae, and these changes were coupled with changes in water level and abiotic turbidity. Deeper water and/or greater turbidity favored dominance by phytoplankton. In Lake Brobo there also was evidence that phytoplankton growth was stimulated following a die-off of vascular plants. The case studies from Waquoit Bay and Lake Okeechobee support conceptual models of succession from vascular plants to benthic algae to phytoplankton along gradients of increasing nutrients and decreasing under-water irradiance. The case studies from Hog Island Bay and Lake Brobo illustrate additional effects (modified sediment-water nutrient fluxes, allelopathy or nutrient release during plant senescence) that could play a role in ecosystem response to nutrient stress.  相似文献   

16.
Fluorene, an energy related polynuclear aromatic hydrocarbon, was applied to several experimental pond ecosystems to effect concentrations of 0.12, 0.5, 2.0, 5.0, and 10.0 mg/L. Water, benthic sediment, and rooted macrophytes were monitored for fluorene residues for 56 days after application. Most of the fluorene at concentrations greater than its water solubility appeared to sublime from the surface of the ponds. The rate of disappearance of fluorene from the water decreased as the application rate increased. This reduction was linked to high concentrations and a flux of fluorene from benthic sediments, macrophytes, and pond surfaces to water columns. Several parameters of photosynthetic primary production were statistically linked to the accelerated disappearance of fluorene from the water.  相似文献   

17.
Methods to derive reaction rates of microbial processes are important since these processes are determining many chemical reactions influencing groundwater quality. Thereby, it is not only important to derive the parameters, but also to have a firm idea about the reliability with which these are determined. Analysis of residuals, sensitivity analyses and analysis of joint confidence intervals provide an interesting tool for this purpose. The method is illustrated in this paper using a push-pull test designed to derive aerobic respiration and denitrification. Therefore, a test solution containing dissolved oxygen and nitrate as reactive tracer and bromide as non-reactive tracer was injected in organic matter rich sediment. Afterwards, this test solution was extracted and water quality was monitored. ReacTrans, a finite-difference, axial-symmetric groundwater flow and solute transport model was developed to simulate the test and derive hydraulic, solute transport and chemical parameters. Aerobic respiration and denitrification were simulated with Michaelis-Menten kinetics. Maximum reaction rates (10.4 and 2.4 mmol/ld for aerobic respiration and denitrification respectively) and Michaelis constants (0.14 and 0.1 mmol/l for aerobic respiration and denitrification respectively) were determined. The reliability with which these parameters are derived is indicated by analysis of residuals, sensitivities and joint confidence intervals. This shows that the Michaelis-Menten parameters can be derived reliable with a push-pull test, whereas the test is insensitive to effective porosity and hydraulic conductivity. Because of the small scale of the test, longitudinal dispersivity was very small and therefore unidentifiable.  相似文献   

18.
The transport of polycyclic aromatic hydrocarbons (PAH) in porous media in the presence of dissolved organic matter (DOM) was predicted with a transport bicontinuum model using independently obtained relationships to derive transport parameters for describing the effect of PAH binding to the DOM. The sorption constants of PAHs to soil and their binding constants to DOM were derived from basic correlations with K(ow) (indicator of hydrophobicity). The kinetic (rate) constants were derived from previously published correlations with K(p) (sorption constant). The independently obtained sorption and rate constants were corrected for binding to DOM and were used to predict the breakthrough curves (BTC) of contaminants in the presence and the absence of DOM. Column results confirmed the independently predicted BTC of PAHs in the presence of DOM that did not sorb to the solid phase, as well as the effect of DOM on the rate of the sorption and desorption processes. These findings confirm the ability to quantitatively describe how DOM facilitates transport of contaminants in the subsurface using independently derived parameters.  相似文献   

19.
Large variations exist in the size, abundance and biota of the two principal categories of freshwater ecosystems, lotic (flowing water; e.g., rivers, streams, deltas and estuaries) and lentic (standing water; lakes, ponds and wetlands) found across the circumpolar Arctic. Arctic climate, many components of which exhibit strong variations along latitudinal gradients, directly affects a range of physical, chemical and biological processes in these aquatic systems. Furthermore, arctic climate creates additional indirect ecological effects through the control of terrestrial hydrologic systems and processes, particularly those associated with cryospheric components such as permafrost, freshwater ice and snow accumulation/ablation. The ecological structure and function of arctic freshwater systems are also controlled by external processes and conditions, particularly those in the headwaters of the major arctic rivers and in the adjacent marine environment. The movement of physical, chemical and biotic components through the interlinked lentic and lotic freshwater systems are major determinants of arctic freshwater ecology.  相似文献   

20.
Mehrotra K  Yablonsky GS  Ray AK 《Chemosphere》2005,60(10):1427-1436
Semiconductor photocatalytic process has been studied extensively in recent years due to its intriguing advantages in environmental remediation. In this study, a two-phase swirl-flow monolithic-type reactor is used to study the kinetics of photocatalytic degradation of benzoic acid in immobilized systems. Transport contributions into the observed degradation rates were determined when catalyst is immobilized. Intrinsic kinetic rate constants and its dependence on light intensity and catalyst layer thickness, values of adsorption equilibrium constant, internal as well as external mass transfer parameters were determined. The simultaneous effect of catalyst loading and light intensity and optimum catalyst layer thickness were also determined experimentally. Reaction rate constants and overall observed degradation rates were compared with slurry systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号