首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specimens of Ciona intestinalis L. were exposed to both gradual (sinusoidal) and abrupt (square-wave) salinity fluctuations and the changes in pumping activity and oxygen sonsumption monitored. Heart rate was monitored under steady state conditions using a new in vivo method, and pumping activity was monitored as spontaneous squirting by use of a pressure transducer. Oxygen consumption was also monitored under steady state conditions and under conditions of declining oxygen tension. It was found that during periods of regular beating the mean heart rate for 5 ascidians was 13.2 beats min-1 for the branchial pacemaker and 32.6 beats min-1 for the visceral pacemaker. Regular periods of beating lasted for approximately 1 min, followed by periods of irregular activity prior to heart beat reversal. The heart beat became irregular and reversal occurred sporadically when the ascidians were exposed to dilute seawater. The ascidians showed a pumping rate of 14 squirts per hour in full-strength seawater. This rate declined during decreasing salinity and ceased entirely when the external seawater concentration reached approximately 60% seawater (100%=32% S). During periods of decreased salinity, the siphons were tightly closed and oxygen consumption was zero. The rate of oxygen consumption by C. intestinalis decreased during decreasing salinities and there was no evidence of an oxygen debt. Oxygen consumption under steady state conditions varied with body weight according to the following: oxygen consuption =0.515 W 0.831 (where W is body weight). The rate of oxygen consumption was found to be dependent on the external oxygen tension.  相似文献   

2.
Oxygen consumption was measured as a function of temperature, oxygen partial-pressure (PO2)and species depth of occurrence for twenty-three species of midwater fishes and crustaceans collected from the eastern Gulf of Mexico from June 1981 to July 1985. Q10s (7° to 20°C) of 3.90 and 3.24 were recorded for myctophid and non-myctophid fish groups, respectively, while values of 2.22, 2.19, 2.19 and 2.54 were calculated for sergestid, penaeid, carid and euphausiid crustacean groups, respectively. Q10s were consistent for species within each group. All of the species tested regulated their oxygen consumption to PO2levels normally encountered within the eastern Gulf. Values of critical partial pressure (Pc) ranged from 20 to 40mm Hg and increased slightly with increasing temperature and respiration rate. Declining respiration with increasing minimum depth of occurrence was primarily a function of temperature alone. Changes in size, dry weight and water content contributed only a small fraction to the observed decrease. This finding contrasts with studies from the eastern Pacific Ocean, where temperature is a minor contributor to changes in respiration rate with depth.  相似文献   

3.
R. F. Dame 《Marine Biology》1972,17(3):243-250
Seasonal variations in the growth, respiration and assimilation of the intertidal oyster Crassostrea virginica (Gmelin) of different sizes were determined. The instantaneous growth rates for intertidal oysters decreased with increasing size and with lower temperatures. Q10 values computed from instantaneous growth rates were approximately 2 during the warm growing season, but were higher in the colder months. Oxygen consumption increased with temperature and body size. A model was developed to predict oxygen consumption at any environmental temperature from 10° to 30°C for oysters ranging in weight from 0.1 to 100.0 g. Q10 values computed from oxygen-consumption rates decreased with increasing temperature and increasing body size. Intertidal oysters utilize a large proportion of their assimilated energy in growth.Supported by a Belle W. Baruch Fellowship in Marine Ecology.  相似文献   

4.
S. V. Job 《Marine Biology》1969,2(2):121-126
In a series of experiments 174, 120 and 139 individuals of the teleost Tilapia mossambica (Peters), were acclimated to 30°C and to salinities of 0.4, 12.5 and 30.5, respectively. The effect of temperature and salinity upon oxygen consumption was studied by abruptly transferring fish of different wet weights to temperatures from 15° to 40°C at an average initial pO2 of 250mm Hg. At each salinity, the proportionate response to temperature is size-independent. The metabolic rate increases as a function of temperature at 15° and 30°C but not at 40°C. Oxygen consumption is, however, salinity dependent; maximum rates are obtained at 12.5S. This salinity is isotonic in the 80 g fish and, to a lesser extent, in the 5 g fish. Reduction in osmotic load is suggested as the probable cause for a greater scope for activity and greater rate of oxygen consumption in 12.5 salinity.  相似文献   

5.
The heat production of Littorina irrorata and Uca pugnax in air was measured with a twin calorimeter while oxygen tension was measured with a pO2 electrode. Both L. irrorata, an oxyconformer, and U. pugnax, a metabolic regulator, showed a rapid decrease in oxygen uptake (below 1.3 mm Hg in L. irrorata and 13.4 mm Hg in U. pugnax) while heat production decreased more slowly. Consequently, during the period of minimum oxygen uptake, the oxycalorific coefficient increased from about 4.8 for both species to an average value of 8.3 in L. irrorata and 19.9 cal ml-1 O2 in U. pugnax, indicating the onset of anaerobic metabolism and accumulation of metabolic and products. Above their respective critical pO2, the oxycalorific coefficient was the same as the commonly used conversion factor of 4.8 cal ml-1 O2. From one time interval to the next, however, the coefficient varied from 3.8 to 5.4 in L. irrorata and from 2.9 to 6.0 in U. pugnax, indicating, that the processes of oxygen consumption and heat production are more or less independent of each other and usually not in phase.  相似文献   

6.
The effects of temperature, salinity and oxygen tension on the rates of oxygen consumption of three different strains of Artemia nauplii have been studied. When acclimated to a salinity of 30, nauplii from each of the three strains were able to maintain approximately constant rates of oxygen consumption over a wide range of oxygen tension. The ability to maintain respiratory independence during hypoxia was reduced, however, with an increase in either temperature or salinity. Nauplii of two of the strains (parthenogenetic diploid and tetraploid) showed a progressive increase in the rate of oxygen consumption with increasing temperature up to 35°C. Nauplii of the bisexual strain appeared to be less tolerant of exposure to temperatures >30°C, since at higher temperatures their oxygen consumption declined slightly. The differences between the nauplii of the different strains in their physiological responses to changing environmental conditions appear to correlate well with their seasonal occurrence in the field.  相似文献   

7.
Oxygen consumption of the saltmarsh isopod Sphaeroma rugicauda (Leach) was measured on 10 occasions during 1973. It was found that the metabolism depended upon both body size and exposure temperature. For most of the year, slope values relating oxygen consumption with size were between 0.5 and 0.9, but during August they were greater than 1.0. Within the environmental temperature range the R-T curve was strictly temperature-dependent, but during the summer there was a translation and rotation of the upper part of the curve to the right. A plateau of temperature-independent metabolism occurred between 30° and 35°C, which are temperatures approaching the critical maximum for the species. Thermal acclimation for 7 days at 20°C resulted in an extended plateau of temperature-independent metabolism between 15° and 35°C.  相似文献   

8.
Spatial and seasonal distribution pattern, life history and production of three species of Neomysis (Mysidacea) which commonly occur in northwestern subarctic Pacific coastal waters, were investigated throughout the year in the Akkeshi-ko estuary, northern Japan. The most abundant species Neomysis awatschensis (annual mean density: 179.8 inds. m−2, biomass: 108.8 mg DW m−2) occurred at the inner part of the estuary including low salinity areas with no clear preference for the seagrass bed. The second most abundant Neomysis mirabilis (mean density: 95.8 inds. m−2, biomass: 90.1 mg DW m−2) occurred at relatively saline seagrass site throughout the year. Occurrence of Neomysis czerniawskii in the estuary was limited to the seagrass bed during summer when their population mainly consisted of juveniles, suggesting that this species is a seasonal migrant between the estuary and the marine environment. Both N. awatschensis and N. mirabilis populations were composed of two generation types, a larger sized overwintering and smaller sized spring/summer generations; however, each species had a different reproductive strategy. N. awatschensis was characterized by fast growth to maturity at a smaller size than N. mirabilis with a relatively high fecundity during warm season, suggesting that this species is an r-strategist which can utilize opportunistically a wide variety of habitats. In contrast, the seagrass bed resident N. mirabilis was a K-strategist which matures at a larger size producing fewer but larger offspring. The annual production of N. awatschensis (0.57–0.70 g DW m−2, mean of the whole estuary) and N. mirabilis (0.58–0.68 g DW m−2, mean of the seagrass bed) at their respective habitats was comparable. Consequently, species-specific life history and distribution pattern are concluded to allow Neomysis spp. to coexist in the estuary and the high carrying capacity of seagrass bed is suggested to contribute to maintain their high biomass level.  相似文献   

9.
Although acutely measured rate processes in coelenterates show close correlation with the Van't Hoff Q10 rule and the distribution of many coelenterate groups is correlated with temperature, little is known about coelenterate temperature adaptation. Analysis of lethal temperatures shows that the southern distribution of 3 species of North Atlantic actinians is correlated with their upper lethal temperature. Oxygen consumption data from acute measurements indicate conformity to the Q10 rule. Oxygen consumption data from animals pre-exposed to various temperatures indicate that oxygen consumption is capable of acclimation to temperature. Metridium senile from Massachusetts shows positive acclimation, typical of a poikilotherm partially regulating its metabolic rate in response to temperature change. Two species from Virginia, Haliplanella luciae and Diadumene leucolena, appear to show a reverse pattern. Their response includes encystment and negative adjustment of metabolic rate, showing evasion rather than regulation in response to environmental change. Temperature has a marked effect on parameters of the activity pattern of Diadumene leucolena, but the temperature sensitivity of activity is not correlated with that of oxygen consumption.  相似文献   

10.
The euryhaline mysid Neomysis integer (Peracarida: Mysidacea) is a common member of the hyperbenthos of the upper reaches of European estuaries. In the East Looe River Estuary (Cornwall, England), this species experiences extensive tidal and seasonal changes in temperature (3 to 15 °C) and salinity (1 to 34‰). In this investigation, the effects of temperature (5, 10 and 15 °C) and salinity (1, 10, 20 and 30‰) on the oxygen consumption of male and female N. integer are reported, and are related to field measurements to identify the adaptive responses of the respiratory physiology to such a variable environment. The general responses were similar for each sex; however, at any given temperature/salinity combination, male N. integer consumed more oxygen than females. The general trends were increased oxygen consumption with increasing temperature (Q10 values ranged from ∼1.7 to 2.5) and decreased oxygen consumption with increasing salinity. Temperature and salinity interacted at high water antagonistically to minimise changes in mysid oxygen-consumption. When related to tidal fluctuations in temperature and salinity experienced by N. integer inhabiting the East Looe River Estuary, the results reveal how the respiratory physiology of this species is adapted to its variable environment. Received: 16 June 1998 / Accepted: 15 December 1998  相似文献   

11.
Adult Sepia officinalis L. were caught in June 1984, in the coastal waters of Wimereux (France). Deposition of the eggs took place in the seawater aquaria of the Station Marine. The oxygen consumption of S. officinalis was measured during embryonic and juvenile development. Aerobic metabolism occurs as soon as the early embryonic Stage 21. Oxygen diffuses through the initially thick egg shell; the oxygen level in the perivitelline liquid reaches a maximal value just before hatching (116.7±6.9 mm Hg). Hatchings display only a slight increase in oxygen consumption compared to embryos in the last stage of development. Respiration experiments with 40 d old juveniles showed that oxygen consumption increases with temperature, but is not affected by photoperiod. Experiments under increasing hypoxia revealed that S. officinalis juveniles are good regulators and maintain a constant oxygen consumption in the range of 4 to 7 mg O2l-1. Juveniles successfully recover from an hypoxic stress of 2 mg O2l-1 maintained for 1 h. This suggests that the respiratory pigments (pre-hemocyanins) of 40 d-old juveniles have a high oxygen affinity and/or that these juveniles have the ability to adapt to anaerobic conditions.  相似文献   

12.
J. Vidal 《Marine Biology》1980,56(2):111-134
Changes in dry weight and in weight-specific growth rates were measured for copepodite stages of Calanus pacificus Brodsky and Pseudocalanus sp. cultured under various combinations of phytoplankton concentration and temperature. Mean dry weight of early copepodites was relatively unaffected by either food concentration or temperature, but mean dry weight of late stages increased hyperbolically with food concentration and was inversely related to temperature. The food concentration at which maximum body weight was attained increased with increasing temperature and body size, and it was considerably higher for C. pacificus than for Pseudocalanus sp. This suggests that final body size of small species of copepods may be determined primarily by temperature, whereas final body size of large species may be more dependent on food concentration than on temperature. Individual body weight increased sigmoidally with age. The weight-specific growth rate increased hyperbolically with food concentration. The maximum growth rate decreased logarithmically with a linear increase in body weight, and the slope of the lines was proportional to temperature. The critical food concentration for growth increased with body size proportionally more at high than at low temperature, and it was considerably higher for C. pacificus than for Pseudocalanus sp. Because of these interactions, early copepodites optimized growth at high temperature, even at low food concentrations, but under similar food conditions late stages attained higher growth at low temperature. The same growth patterns were found for both species, but the rates were significantly higher for the larger species, C. pacificus, than for the smaller one, Pseudocalanus sp. On the basis of findings in this study and of analyses of relationships between the maximum growth rate, body size, and temperature from other studies it is postulated (1) that the extrapolation of growth rates from one species to another on the basis of similarity in body size is not justified, even for taxonomically related species; (2) that the allometric model is inadequate for describing the relationship between the maximum weight-specific growth rate and body size at the intraspecific level; (3) that the body-size dependence of this rate is strongly influenced by temperature; and (4) that species of zooplankton seem to be geographically and vertically distributed, in relation to body size and food availability, to optimize growth rates at various stages of their life cycles.Contribution No. 1127 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

13.
Predictions of short and long term changes in Sepia officinalis metabolism are useful, since this species is both economically important for aquaculture and also is an ideal experimental laboratory organism. In this study standard and routine oxygen consumption rates of newly hatched and juvenile laboratory raised cuttlefish S. officinalis ranging between 0.04 and 18.48 g dry body mass (Dm), were measured over a range of temperatures (10, 15, 20 and 25°C). The mass exponent (b) ranged between 0.706 and 0.992 for standard oxygen consumption and between 0.694 and 0.990 for routine oxygen consumption. Oxygen consumption scaled allometrically (b = 0.7) with body mass for cuttlefish <2 g Dm and isometrically (b = 1) thereafter. No significant differences were apparent amongst the slopes of oxygen consumption and body mass at different temperatures for standard and routine oxygen consumption. However, the intercepts differed significantly amongst the regression lines, indicating a significant effect of temperature on the magnitude of oxygen consumption. The combined effect of temperature (T) and dry body mass (Dm) are best described by the following equations: cuttlefish <2 g, MO2 = 0.116Dm0.7111.086 T and >2 g, MO2 = 0.076Dm0.9831.091 T for standard oxygen consumption; cuttlefish <2 g, MO2 = 0.538Dm0.7291.057 T and >2 g, MO2 = 0.225Dm0.9621.081 T for routine oxygen consumption. Using these equations it was estimated that a cuttlefish of 1 g Dm held at 20°C, eating 5% Dm day−1 and undergoing standard and routine metabolism consumes 21.3 and 35.4%, respectively of its total daily energy intake. Juvenile cuttlefish (3.32–5.08 g Dm) held at 15°C and deprived of food for 27 days maintained a stable standard oxygen consumption rate for the first 6 days following starvation. By the 18th day without food, oxygen consumption rate had declined by 53% and further declined to 65% below the standard oxygen consumption rate on the 27th day. Upon resumption of feeding, the respiration rate returned immediately to the initial level prior to food deprivation. The present study defines the basic energy requirements and general physiological state of young cuttlefish at temperatures of 10–25°C with and without food.  相似文献   

14.
During July of 1983, 1986, and 1987, we measured rates of oxygen consumption of 234 individuals of 17 species of midwater crustaceans (orders Decapoda, Mysidacea, and Euphausiacea) off the Hawaiian islands at depths from the surface to greater than 1200 m. The routine metabolic rates declined with increasing depths of the species' occurrence to an extent greater than could be accounted for by depth-related changes in body size or water temperature. Most species appeared able to regulate their oxygen consumption down to the lowest oxygen partial pressures found in their depth range (20 mm Hg O2), but did not regulate to such low oxygen partial pressures as did similar midwater crustaceans off California, where oxygen levels reach as low as 6 mm Hg. Metabolic rates of the shallower-living, but not the deepest-living Hawaiian crustaceans were significantly higher than those of Californian crustaceans. This is interpreted as indicating that the metabolic rates of midwater crustaceans are not adapted specifically to differing levels of primary production and that the decline with depth of metabolic rates in these species is not the result of food limitation at depth. The data are, however, consistent with the hypothesis that lower metabolic rates at depth are due to the relaxation of selection pressures relating to visual predation near the surface.  相似文献   

15.
We investigated the physiological plasticity and environmental tolerance of two phylogenetically closely related, ecologically similar and co-occurring species of supralittoral amphipods differing drastically in the size of their geographical ranges. A series of physiological traits were characterised for the Corsican-endemic Talorchestia ugolinii Bella-Santini and Ruffo and the widespread Talitrus saltator Montagu. The effect of body mass, temperature and salinity on heart rate (used as proxy for metabolic activity and stress), the effect of temperature on oxygen consumption and the tolerance to salinity exposure were investigated in both species, together with the characterisation of haemolymph osmoregulation in T. ugolinii. Our results showed that there is a clear difference in the resting metabolic rates and physiological capacity, as well as environmental tolerance, between T. saltator and T. ugolinii, with T. saltator overall showing a broader physiological niche. Although T. ugolinii showed a relatively good ability to regulate its haemolymph osmotic concentration (similar to that previously described for T. saltator), it demonstrated a lower tolerance to exposure to hypo-osmotic stress. In addition, a consistent picture emerged between the ability to control the cardiac function and the capacity to actively respond to osmotic stress. The physiological findings are discussed in relation to the known ecology and geographical distribution of T. ugolinii.  相似文献   

16.
Larvae of the bivalve molluso Adula californiensis (Phillippi, 1847) were reared for 3 days, from fertilization to veliger stage, at optimum conditions (15°C, 32.2 S), and then transferred to experimental temperatures and salinities for 22 more days to determine the effects of these factors on survival and growth. For larvae surviving to 25 days, maximum survival was estimated, by response-surface techniques, to occur at temperatures below 10°C and at salinities above 25. A comparison of 60% survival response contours for 3, 15 and 25-day old larvae indicated a progressive shift in temperature and salinity tolerance with age of larvae. The older larvae became more tolerant to reduced salinity, but less tolerant to high temperatures. Growth of the larvae over 25 days of culture was slight, and relatively independent of temperature and salinity conditions found in the environment. Oxygen consumption of 3-day old veliger larvae measured at various combinations of temperature and salinity generally increased from 7° to 18°C, and then sharply decreased from 18° to 21°C. A plateau of oxygen consumption from 9° to 15°C at 32.9 S indicated that the larvae are adapted to oceanic rather than estuarine conditions. A comparison of 25-day larval survival, mean length, and growth, with oxygen consumption of 3-day old veliger larvae indicated that high temperatures (15°C, and above) coupled with reduced salinities (26.1, and below) were unfavorable for prolonged larval life. Because of the lack of larval adaptations to estuarine conditions, larva survival and, hence, successful recruitment of this species within Yaquina Bay (Oregon, USA) depends upon the essentially oceanic conditions found only during the summer in the lower part of the Bay.  相似文献   

17.
Routine oxygen uptake (QO2) by yolk-sac and firstfeeding larvae of herring (Clupea harengus L.) and plaice (Pleuronectes platessa L.) was studied after acute change of temperature (8°, 13°, 18°C) and salinity (5, 12.7, 32, 40). In both species, QO2 (l mg-1 dry wt h-1) of both larval stages increased with increasing temperature. Salinity effect on QO2 varied: for yolk-sac larvae of both species a lower QO2 was found at lower combined salinities (5 and 12.7); for feeding larvae a lower QO2 was observed at 12.7 for both species, possibly due to the relatively smaller size of larvae used at this salinity. For both species, oxygen uptake increased as larvae grew and weight regression coefficients were between 0.74 and 1.33. At 32 S, no difference was found in oxygen consumption between species as a function of temperature.Based on a dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science at the University of Stirling, Stirling, Scotland. The work was performed at the Dunstaffnage Marine Research Laboratory, Oban, Scotland  相似文献   

18.
The scaling of metabolic rates with body mass is one of the best known and most studied characteristics of aquatic animals. Herein, we studied how size is related to oxygen consumption, ammonia excretion, and ingestion rates in tropical (Octopus maya) and cold-water (Enteroctopus megalocyathus) cephalopod species in an attempt to understand how size affects their metabolism. We also looked at how cephalopod metabolisms are modulated by temperature by constructing the relationship between metabolism and temperature for some benthic octopod species. Finally, we estimated the energy balance for O. maya and E. megalocyathus in order to validate the use of this information for aquaculture or fisheries management. In both species, oxygen consumption and ammonia excretion increased allometrically with increasing body weight (BW) expressed as Y = aBW b . For oxygen consumption, b was 0.71 and 0.69 for E. megalocyathus and O. maya, respectively, and for ammonia excretion it was 0.37 and 0.43. Both species had low O/N ratios, indicating an apparent dependence on protein energy. The mean ingestion rates for E. megalocyathus (3.1 ± 0.2% its BW day−1) and O. maya (2.9 ± 0.5% its BW day−1) indicate that voracity, which is characteristic of cephalopods, could be independent of species. The scope for growth (P = I − (H + U + R) estimated for E. megalocyathus was 28% higher than that observed in O. maya (320 vs. 249 kJ day−1 kg−1). Thus, cold-water cephalopod species could be more efficient than tropical species. The protein and respiratory metabolisms of O. maya, E. megalocyathus, and other octopod species are directly dependent on temperature. Our results offer complementary evidence that, as Clarke (2004) stated, the metabolic response (R and U) cannot be determined mechanistically by temperature, as previously proposed (Gillooly et al. 2002).  相似文献   

19.
Starry flounder (Platichthys stellatus Pallas) were fitted with masks for measurements of ventilation volume and post-gill oxygen tensions, and with arterial and venous cannulae. They were then subjected to periods of low oxygen levels and high temperature. Pre- and post-gill oxygen tension, blood oxygen tension and content, oxygen uptake, and ventilation volume were measured. Effectiveness of gas exchange across the gills, cardiac output, and transfer factor were calculated. A series of blood-oxygen dissociation curves were also constructed at two pH's and temperatures. The data suggest that flounder are able to regulate oxygen uptake down to an environmental oxygen tension of at least 50 mm Hg by increasing ventilation volume and transfer factor while not changing blood flow rate or pattern. Also, the flounder's response to temperature increase is similar to the expected response to exercise, with the exception of an increase in gill diffusion resistance.  相似文献   

20.
The metabolic strategies of the polychaete Marenzelleria viridis (Verrill 1873), a successful immigrant into Baltic shallow eutrophic coastal waters with meso-to oligohaline salinities since the 1980's, were determined by simultaneous calorimetry and respirometry. Resistance to oxygen deficiency under varying ecological conditions was also examined. The results of the studies with this immigrant were compared to those with the common indigeneous polychaete Nereis (Hediste) diversicolor (O.F. Müller). At 10 and 20 °C and the average habitat salinity of 5 M. viridis gradually reduced its metabolic activity with declining oxygen partial preessures (pO2), whereas H. diversicolor maintained its metabolic activity. The metabolism of both species remained fully aerobic down to a pO2 of 2 kPa. An additional hyposmotic stress of 0.5 salinity at a temperature of 20 °C led to a decrease in the rate of oxygen consumption in H. diversicolor below a pO2 of 10 kPa, whereas metabolic heat dissipation remained constant. M. viridis, however, further reduced both, metabolic heat dissipation and oxygen consumption. The metabolic rates of both species under anoxia were similar, amounting to ca. 20% of the normoxic rate. The resistance of the two species to oxygen deficiency was also similar, ranging between 21 and 290 h (median survival time LT50), depending on temperature and salinity. Specimens used in the present study were collected from the Southern Baltic coastal inlet of Darß-Zingster-Boddenkette during 1992 and 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号