首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper examines the vulnerability of the Congo Basin's forests through a GIS platform, taking into consideration the variables of population growth, road density, logging concession, and forest fragmentation. The assessment indicates that the forests will continue to shrink towards the interior over the next 50 years. Current contiguous forests will fragment into three large blocks, including one on the west side of the Congo River and two in the Democratic Republic of Congo, while a large number of small forest patches will retain in the periphery of the large blocks. The study shows that integrated GIS assessment of the driving forces of tropical deforestation can shed light on the future forest distribution and provide a tool to address the broader implications of social and economic development for tropical deforestation.  相似文献   

2.
In 1996, the Smithsonian Tropical Research Institute and the Republic of Panama's Environmental Authority, with support fromthe United States Agency for International Development, undertook a comprehensive program to monitor the ecosystem of the Panama Canal watershed. The goals were to establish baselineindicators for the integrity of forest communities and rivers. Based on satellite image classification and ground surveys, the2790 km2 watershed had 1570 km2 of forest in 1997, 1080 km2 of which was in national parks and nature monuments. Most of the 490 km2 of forest not currently in protected areas lies along the west bank of the Canal, and its managementstatus after the year 2000 turnover of the Canal from the U.S. to Panama remains uncertain. In forest plots designed to monitorforest diversity and change, a total of 963 woody plant specieswere identified and mapped. We estimate there are a total of 850–1000 woody species in forests of the Canal corridor. Forestsof the wetter upper reaches of the watershed are distinct in species composition from the Canal corridor, and have considerably higher diversity and many unknown species. Theseremote areas are extensively forested, poorly explored, and harbor an estimated 1400–2200 woody species. Vertebrate monitoring programs were also initiated, focusing on species threatened by hunting and forest fragmentation. Large mammals are heavily hunted in most forests of Canal corridor, and therewas clear evidence that mammal density is greatly reduced in hunted areas and that this affects seed predation and dispersal. The human population of the watershed was 113 000 in 1990, and grew by nearly 4% per year from 1980 to 1990. Much of this growth was in a small region of the watershed on the outskirts of Panama City, but even rural areas, including villages near and within national parks, grew by 2% per year. There is no sewage treatment in the watershed, and many towns have no trashcollection, thus streams near large towns are heavily polluted. Analyses of sediment loads in rivers throughout the watershed did not indicate that erosion has been increasing as a result ofdeforestation, rather, erosion seems to be driven largely by total rainfall and heavy rainfall events that cause landslides.Still, models suggest that large-scale deforestation would increase landslide frequency, and failure to detect increases inerosion could be due to the gradual deforestation rate and the short time period over which data are available. A study of runoff showed deforestation increased the amount of water fromrainfall that passed directly into streams. As a result, dry season flow was reduced in a deforested catchment relative to aforested one. Currently, the Panama Canal watershed has extensive forest areasand streams relatively unaffected by humans. But impacts of hunting and pollution near towns are clear, and the burgeoningpopulation will exacerbate these impacts in the next few decades.Changes in policies regarding forest protection and pollution control are necessary.  相似文献   

3.
MAPPING TROPICAL DEFORESTATION IN CENTRAL AFRICA   总被引:3,自引:0,他引:3  
The NASA Landsat Pathfinder Humid Tropical Deforestation Project was to map deforestation activities in the humid tropics using datasets from both the Landsat TM (Thematic Mapper) and MSS (Multispectral Scanner System). In Central Africa, its effort had been constrained by the availability of cloud-free satellite coverage, especially for the 1970s Landsat MSS imagery. Here, we reported the deforestation rate and its spatial variability in the region using 18 pairs of co-registered Landsat TM imagery from the 1980s to 1990s. Of the total classified area of 416000 km, there were approximately 217000 km2 of dense forest and 24000 km2 of degraded forest in the 1980s. A total of 1012 km2 of forest, including 542 km2 of dense forest and 470 km2 of degraded forest, were cleared annually with an annual deforestation rate of 0.42%, varying among scenes ranging from 0.03 to 2.72%. Additionally, an average of 0.12% (ranging from 0.01 to 0.77% among scenes) or 257 km2 of dense forest was degraded annually. Regression analyses indicated that extensive deforestation occurred in areas with larger forest cover, including dense and degraded forests. Image interpretation also confirmed the hypothesized relationship between deforestation and forest accessibility. The annual clearance of the dense forest was significantly related to the rural population density, and there was a positive relationship between the dense forest degraded during the 1980s–1990s and the degraded forest area in the 1980s.  相似文献   

4.
This study was conducted to assess potential human health risks presented by pathogenic bacteria in a protected multi-use lake-reservoir (Lake Ma Vallée) located in west of Kinshasa, Democratic Republic of Congo (DRC). Water and surface sediments from several points of the Lake were collected during summer. Microbial analysis was performed for Escherichia coli, Enterococcus (ENT), Pseudomonas species and heterotrophic plate counts. PCR amplification was performed for the confirmation of E. coli, ENT, Pseudomonas spp. and Pseudomonas aeruginosa isolated from samples. The results reveal low concentration of bacteria in water column of the lake, the bacterial quantification results observed in this study for the water column were below the recommended limits, according to WHO and the European Directive 2006/7/CE, for bathing water. However, high concentration of bacteria was observed in the sediment samples; the values of 2.65?×?103, 6.35?×?103, 3.27?×?103 and 3.60?×?108 CFU g?1 of dry sediment for E. coli, ENT, Pseudomonas spp. and heterotrophic plate counts, respectively. The results of this study indicate that sediments of the Lake Ma Vallée can constitute a reservoir of pathogenic microorganisms which can persist in the lake. Possible resuspension of faecal indicator bacteria and pathogens would affect water quality and may increase health risks to the population during recreational activities. Our results indicate that the microbial sediment analysis provides complementary and important information for assessing sanitary quality of surface water under tropical conditions.  相似文献   

5.
Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920’s to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km?×?1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920–1973–1989–1999–2006–2012). The total forest area of biosphere reserve was found to be 5,806.5 km2 (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km2 (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920–1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920–1973 while, only 15 grids have shown >75 ha loss during 1973–1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically reduced after the declaration due to high degree of protection, thus indicating the secure future of reserve in the long term under the current forest management practices. The present work will stand as the most up-to-date assessment on the forest cover of the Nilgiri Biosphere Reserve with immediate applications in monitoring and management of forest biodiversity.  相似文献   

6.
Deforestation and fragmentation are important concerns in managing and conserving tropical forests and have global significance. In the Indian context, in the last one century, the forests have undergone significant changes due to several policies undertaken by government as well as increased population pressure. The present study has brought out spatiotemporal changes in forest cover and variation in forest type in the state of Odisha (Orissa), India, during the last 75 years period. The mapping for the period of 1924–1935, 1975, 1985, 1995 and 2010 indicates that the forest cover accounts for 81,785.6 km2 (52.5 %), 56,661.1 km2 (36.4 %), 51,642.3 km2 (33.2 %), 49,773 km2 (32 %) and 48,669.4 km2 (31.3 %) of the study area, respectively. The study found the net forest cover decline as 40.5 % of the total forest and mean annual rate of deforestation as 0.69 %?year?1 during 1935 to 2010. There is a decline in annual rate of deforestation during 1995 to 2010 which was estimated as 0.15 %. Forest type-wise quantitative loss of forest cover reveals large scale deforestation of dry deciduous forests. The landscape analysis shows that the number of forest patches (per 1,000) are 2.463 in 1935, 10.390 in 1975, 11.899 in 1985, 12.193 in 1995 and 15.102 in 2010, which indicates high anthropogenic pressure on the forests. The mean patch size (km2) of forest decreased from 33.2 in 1935 to 5.5 in 1975 and reached to 3.2 by 2010. The study demonstrated that monitoring of long term forest changes, quantitative loss of forest types and landscape metrics provides critical inputs for management of forest resources.  相似文献   

7.
This study outlines and original tool for rural policy planning in southern Europe. This new tool is a process-based, scale-dependent, rural policy-making approach, which is designed to address increasing land degradation problems in southern Europe. Seven important processes are identified (land abandonment, devegetation, intensification in agriculture, global climate change, accelerated soil erosion, increasing water demands, urbanisation) and plotted on a space-time diagram, which clearly shows the spatial and temporal scales for which these processes are significant for landscape change in southern Europe. Conclusions are derived concerning, in particular, sustainable (optimal) rural policy-making for southern Europe's problematic land management. An optimal spatial-temporal scale for land management in southern Europe may range spatially from the farm (0.5 km2) to sub-provincial level (450 km2) and temporally from 7 to 30 years. The study delineates methods and results derivable from such a new policy-planning approach and suggests the usefulness of combining this approach with ecological land classification at the landscape level.  相似文献   

8.
Spatially explicit approach is essential to prioritise the ecosystems for biodiversity conservation. In the present study, the conservation status of 20 protected areas of the Western Ghats of Kerala, India, was analysed based on long-term changes in forests (1975–1985–1995–2005–2013), landscape level changes in fragmentation and forest fires (2005–2015). This study has shown that a significant forest loss occurred in protected areas before declaration. Idukki is one of the major protected areas which showed a drastic reduction (18.83%) in its forest cover. During 1985–1995, Periyar tiger reserve had lost 24.19 km2 core 3 forest area followed by Peppara (18.54 km2), Parambikulam (17.93 km2), Chimmony (17.71 km2), Peechi-Vazhani (12.31 km2) and Neyyar (11.67 km2). An area of 71.33 km2 of the protected area was affected by fires in 2014. Overall protected area-wise decadal analysis indicates Periyar has the highest number of fire incidences followed by Wayanad, Kurinjimala, Silent Valley and Eravikulam. Disturbances in the form of fires and fragmentation still exist and may have significant conservation threat to flora and fauna. Among protected areas, many are having a probability to go under threat or dynamic stage. Chinnar, Thattekkad and Kurinjimala sanctuaries are representing high levels of vulnerability, or they are near to decline stage. Habitat level monitoring of the anthropogenic disturbances can be efficiently useful for the strategic conservation planning. The present study has provided geospatial database on spatial patterns of deforestation, fragmentation and forest fires in protected areas of Kerala. Conservation prioritization approach based on these parameters will be useful for the strategic planning in the state of Kerala.  相似文献   

9.
The study presents a new methodology to quantify spatiotemporal dynamics of climate change vulnerability at a regional scale adopting a new conceptual model of vulnerability as a function of climate change impacts, ecological stability, and socioeconomic stability. Spatiotemporal trends of equally weighted proxy variables for the three vulnerability components were generated to develop a composite climate change vulnerability index (CCVI) for a Mediterranean region of Turkey combining Landsat time series data, digital elevation model (DEM)-derived data, ordinary kriging, and geographical information system. Climate change impact was based on spatiotemporal trends of August land surface temperature (LST) between 1987 and 2016. Ecological stability was based on DEM, slope, aspect, and spatiotemporal trends of normalized difference vegetation index (NDVI), while socioeconomic stability was quantified as a function of spatiotemporal trends of land cover, population density, per capita gross domestic product, and illiteracy. The zones ranked on the five classes of no-to-extreme vulnerability were identified where highly and moderately vulnerable lands covered 0.02% (12 km2) and 11.8% (6374 km2) of the study region, respectively, mostly occurring in the interior central part. The adoption of this composite CCVI approach is expected to lead to spatiotemporally dynamic policy recommendations towards sustainability and tailor preventive and mitigative measures to locally specific characteristics of coupled ecological–socioeconomic systems.  相似文献   

10.
Unprecedented rates of human-induced changes in land use and land cover (LULC) at local and regional scales lead to alterations of global biogeochemical cycles. Driving forces behind LULC changes mainly include rapid growth rates of population and consumption, lack of valuation of ecological services, poverty, ignorance of biophysical limitations, and use of ecologically incompatible technologies. One of the major ecological tragedies of the commons in a Mediterranean region of Turkey is the loss of Lake Amik at the expense of increasing the area of croplands, which used to provide vital ecosystem goods and services for the region. In this study, we aimed at quantifying the effects of past land-use transitions on soil organic carbon (SOC) pools (0–20 cm) in a Mediterranean region of 3930 km2, between 1972 and 2000. LULC changes were quantified from a time series of satellite images of Landsat-MSS in 1972, Landsat-5 TM in 1987, and Landsat-7 ETM+ in 2000 using geographic information systems. The study showed that the increase in croplands between 1972 and 1987 took place at the expense of the irreversible losses of Lake Amik and its related wetlands of over 53 km2. In the period of 1972 to 2000, croplands, settlements, and evergreen forests increased by 174%, 106%, and 14%, respectively. The increase in settlements occurred mostly to the detriment of croplands. Given the average rates of all the land-use transitions, and associated changes in SOC density for the study region of 3930 km2, total SOC pool was estimated to decrease by 14.1% from 130.1 Mt in 1972 to 111.7 Mt in 2000.  相似文献   

11.
Some issues of environmental concern in Kampala,the capital city of Uganda   总被引:1,自引:0,他引:1  
Kampala, the capital city of Uganda is the administrative, political, commercial, industrial, educational and cultural centre of Uganda. The city has an area of 190 km2 and is located 8 km north of Lake Victoria (the second largest fresh water lake in the world) and approximately 42 km north of the equator. The population varies from about 1.2 million during the day to perhaps 0.9 million at night. The anthropogenic activityof this population far exceeds the infrastructure capacity of the city, leading to the deterioration of the urban environment. This article highlights the major sources of environmental degradation and pollution in the city, which include solid waste,abattoir waste, sewage, sanitation, drainage, industrial pollution, traffic pollution, atmospheric pollution, urban agriculture, rapid urbanisation and water hyacinth.  相似文献   

12.
Estimation of late twentieth century land-cover change in California   总被引:1,自引:0,他引:1  
We present the first comprehensive multi-temporal analysis of land-cover change for California across its major ecological regions and primary land-cover types. Recently completed satellite-based estimates of land-cover and land-use change information for large portions of the United States allow for consistent measurement and comparison across heterogeneous landscapes. Landsat data were employed within a pure-panel stratified one-stage cluster sample to estimate and characterize land-cover change for 1973?C2000. Results indicate anthropogenic and natural disturbances, such as forest cutting and fire, were the dominant changes, followed by large fluctuations between agriculture and rangelands. Contrary to common perception, agriculture remained relatively stable over the 27-year period with an estimated loss of 1.0% of agricultural land. The largest net declines occurred in the grasslands/shrubs class at 5,131 km2 and forest class at 4,722 km2. Developed lands increased by 37.6%, composing an estimated 4.2% of the state??s land cover by 2000.  相似文献   

13.
14.
Soil erosion is a serious environmental problem in Guizhou Province, which is located in the centre of the karst areas of southwestern China. Unfortunately, Guizhou Province suffers from a lack of financial resources to research, monitor and model soil erosion at large watershed. In order to assess the soil erosion risk, soil erosion modeling at the watershed scale are urgently needed to be undertaken. This study integrated the Revised Universal Soil Loss Equation (RUSLE) with a Geographic Information System (GIS) to estimate soil loss and identify the risk erosion areas in the Maotiao River watershed, which is a typical rural watershed in Guizhou Province. All factors used in the RUSLE were calculated for the watershed using local data. It was classified into five categories ranging from minimal risk to extreme erosion risk depending on the calculated soil erosion amount. The soil erosion map was linked to land use, elevation and slope maps to explore the relationship between soil erosion and environmental factors and identify the areas of soil erosion risk. The results can be used to advice the local government in prioritizing the areas of immediate erosion mitigation. The integrated approach allows for relatively easy, fast, and cost-effective estimation of spatially distributed soil erosion. It thus indicates that RUSLE-GIS model is a useful and efficient tool for evaluating and mapping soil erosion risk at a large watershed scale in Guizhou Province.  相似文献   

15.
Shifts in biological communities are occurring at rapid rates as human activities induced global climate change increases. Understanding the effects of the change on biodiversity is important to reduce loss of biodiversity and mass extinction, and to insure the long-term persistence of natural resources and natures’ services. Especially in remote landscapes of developing countries, precise knowledge about on-going processes is scarce. Here we apply satellite imagery to assess spatio-temporal land use and land cover change (LULCC) in the Bale Mountains for a period of four decades. This study aims to identify the main drivers of change in vegetation patterns and to discuss the implications of LULCC on spatial arrangements and trajectories of floral communities. Remote sensing data acquired from Landsat MSS, Landsat ETM + and SPOT for four time steps (1973, 1987, 2000, and 2008) were analyzed using 11 LULC units defined based on the dominant plant taxa and cover types of the habitat. Change detection matrices revealed that over the last 40?years, the area has changed from a quite natural to a more cultural landscape. Within a representative subset of the study area (7,957.5?km?2), agricultural fields have increased from 1.71% to 9.34% of the total study area since 1973. Natural habitats such as upper montane forest, afroalpine grasslands, afromontane dwarf shrubs and herbaceous formations, and water bodies also increased. Conversely, afromontane grasslands have decreased in size by more than half (going from 19.3% to 8.77%). Closed Erica forest also shrank from 15.0% to 12.37%, and isolated Erica shrubs have decreased from 6.86% to 5.55%, and afroalpine dwarf shrubs and herbaceous formations reduced from 5.2% to 1.56%. Despite fluctuations the afromontane rainforest (Harenna forest), located south of the Bale Mountains, has remained relatively stable. In conclusion this study documents a rapid and ecosystem-specific change of this biodiversity hotspot due to intensified human activities (e.g., deforestation, agriculture, infrastructure expansion). Specifically, the ecotone between the afromontane and the afroalpine area represent a “hotspot of biodiversity loss” today. Taking into consideration the projections of regional climate warming and modified precipitation regimes, LULCC can be expected to become even more intensive in the near future. This is likely to impose unprecedented pressures on the largely endemic biota of the area.  相似文献   

16.
Rural coastal aquifers are undergoing rapid changes due to increasing population, high water demand with expanding agricultural and domestic uses, and seawater intrusion due to unmanaged water pumping. The combined impact of these activities is the deterioration of groundwater quality, public health concerns, and unsustainable water demands. The Kalpitiya peninsula located northwest of Sri Lanka is one area undergoing such changes. This land area is limited and surrounded almost completely by sea and lagoon. This study consists of groundwater sampling and analysis, and vulnerability assessment using the DRASTIC method. The results reveal that the peninsula is experiencing multiple threats due to population growth, seawater intrusion, land use exploitation for intensive agriculture, groundwater vulnerability from agricultural and domestic uses, and potential public health impacts. Results show that nitrate is a prevalent and serious contaminant occurring in large concentrations (up to 128 mg/l NO3?CN), while salinity from seawater intrusion produces high chloride content (up to 471 mg/l), affecting freshwater sources. High nitrate levels may have already affected public health based on limited sampling for methemoglobin. The two main sources of nitrogen loadings in the area are fertilizer and human excreta. The major source of nitrogen results from the use of fertilizers and poor management of intense agricultural systems where a maximum application rate of up to 11.21 metric tons N/km2 per season is typical. These findings suggest that management of coastal aquifers requires an integrated approach to address both the prevalence of agriculture as an economic livelihood, and increasing population growth.  相似文献   

17.
An assessment of the organic carbon stock present in living or dead vegetation and in the soil on the 450 km2 of the future Nam Theun 2 hydroelectric reservoir in Lao People??s Democratic Republic was made. Nine land cover types were defined on the studied area: dense, medium, light, degraded, and riparian forests; agricultural soil; swamps; water; and others (roads, construction sites, and so on). Their geographical distribution was assessed by remote sensing using two 2008 SPOT 5 images. The area is mainly covered by dense and light forests (59%), while agricultural soil and swamps account for 11% and 2%, respectively. For each of these cover types, except water, organic carbon density was measured in the five pools defined by the Intergovernmental Panel on Climate Change: aboveground biomass, litter, deadwood, belowground biomass, and soil organic carbon. The area-weighted mean carbon densities for these pools were estimated at 45.4, 2.0, 2.2, 3.4, and 62.2 tC/ha, respectively, i.e., a total of about 115 ± 15 tC/ha for a soil thickness of 30 cm, corresponding to a total flooded organic carbon stock of 5.1 ± 0.7 MtC. This value is much lower than the carbon density for some South American reservoirs for example where total organic carbon stocks range from 251 to 326 tC/ha. It can be mainly explained by (1) the higher biomass density of South American tropical primary rainforest than of forests in this study and (2) the high proportion of areas with low carbon density, such as agricultural or slash-and-burn zones, in the studied area.  相似文献   

18.
The Northeastern semi-arid Brazilian region is experiencing rapid social and economic development based on improving water management and even in areas of low human occupation, anthropogenic emissions of N and P surpass natural emissions in at least one order of magnitude and these additional loads can alter the water quality of the receiving estuaries. This study estimates, using an emission factor approach, the annual emissions of N and P from natural processes and anthropogenic sources for estuaries along the Ceará State, NE Brazil. Emission factors from natural sources are one to two orders of magnitude lower than those for anthropogenic sources. Among the anthropogenic activities, the aquaculture is responsible for most N emission (0.52 t km−2 year−1) followed by waste water and husbandry. For P, the largest average emission factors are from husbandry (0.30 t km−2 year−1), waste water and agriculture.  相似文献   

19.
Sudan is the largest country in Africa with an area of about 2.5 million km2; the country hosts a population of about 31 million people. About two-thirds of the country area is located within arid and semi-arid regions. Recently, especially during the last half of the previous century, these regions were subject to various forms of land degradation. This paper discusses the general prospects and constraints of desert agriculture. It also presents a detailed case study of West Omdurman, which is located in a semi-desert climatic zone. The ambitious plans to utilise the area for agricultural production were initiated because of the relatively fertile soil, availability of water and the proximity of the area to marketing and export centres. The paper discusses the different land use systems experienced in the area, reasons for failure are identified and possible remedies discussed. In addition, constraints facing the proposed West Omdurman Canal Project are also discussed. Finally, the paper reviews the major research findings of Rawakeeb Dryland Research Center with regard to promoting agricultural productivity.  相似文献   

20.
Climate change impact on the environment makes the coastal areas vulnerable and demands the evaluation of such susceptibility. Historical changes in the shoreline positions and inundation based on projected sea-level scenarios of 0.5 and 1 m were assessed for Nagapattinam District, a low-lying coastal area in the southeast coast of India, using high-resolution Shuttle Radar Topography Mission data; multi-dated Landsat satellite images of 1978, 1991, 2003, and 2015; and census data of 2011. Image processing, geographical information system, and digital shoreline analysis system methods were used in the study. The shoreline variation indicated that erosion rate varied at different time scales. The end point rate indicated the highest mean erosion of ??3.12 m/year, occurred in 73% of coast between 1978 and 1991. Weighted linear regression analysis revealed that the coast length of 83% was under erosion at a mean rate of ??2.11 m/year from 1978 to 2015. Sea level rise (SLR) impact indicated that the coastal area of about 14,122 ha from 225 villages and 31,318 ha from 272 villages would be permanently inundated for the SLR of 0.5 and 1 m, respectively, which includes agriculture, mangroves, wetlands, aquaculture, and forest lands. The loss of coastal wetlands and its associated productivity will severely threaten more than half the coastal population. Adaptation measures in people participatory mode, integrated into coastal zone management with a focus on sub-regional coastal activities, are needed to respond to the consequences of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号