首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
M. Omori 《Marine Biology》1971,9(3):228-234
Sergestes lucens Hansen, a mesopelagic shrimp fished commercially in Suruga Bay, Japan, was successfully reared from egg to post-larval stage V under laboratory conditions. Chaetoceros ceratosporum and Artemia nauplii were found to be satisfactory food in the laboratory during rearing. Growth, mortality, food preference, and feeding and swimming activities during the various developmental stages were investigated. Temperature changes greatly affected the speed of development and the mortality of the larvae. The optimum temperature range for larval development was 18° to 25°C. The growth rate (length) of larval stages was as rapid as 0.16mm/ day at 20 °C and 0.21 mm/day at 23 °C. The larvae first started feeding on phytoplankton at elaphocaris stage I, and then gradually became predators in the post-larval stages. It is suggested that the critical period for the species occurs in the elaphocaris stages. Environmental data, vertical distribution of the species, and data obtained from laboratory experiments suggest that the fluctuation in the abundance of S. lucens is greatly influenced by the water temperature at around 50 m from June to August. Feeding mechanisms observed in the post-larval stages are described.  相似文献   

2.
Chabot  Denis  Ouellet  Patrick 《Marine Biology》2005,147(4):881-894
Larvae of the northern shrimp Pandalus borealis (Krøyer) are pelagic. In the Estuary and Gulf of St. Lawrence, Canada, the early stages are found in the upper 25-m of the water column in spring and early summer and are expected to experience a range of water temperatures from as low as 0°C to as high at 6°C. Little is known of the impact of water temperature on metabolic requirements of northern shrimp larvae. In this study, routine respiration (VO2), maximum respiration (electron transport system activity, ETSA) and metabolic scope for growth (MS, ETSA–VO2) of northern shrimp larvae were measured as a function of temperature (3, 5 and 8°C), developmental stage (I–V at 3°C, I–VII at 5°C and 8°C) and growth rate in dry mass. After logarithmic transformation, all three metabolic variables were linearly related to dry mass. The increase in VO2 with body mass was faster at 5°C than at 3 or 8°C, whereas with ETSA this increase was slower. As a result, MS increased more slowly with dry mass at 5°C than at 3 and 8°C. However, MS did not limit growth in this study, since it explained only 39% of the variability in growth. All three metabolic variables as well as growth varied together as a function of temperature and ontogeny. Q10 of all three metabolic variables ranged from 1.6 and 2.2 for stages I–V larvae, except for VO2 at stage I (3.9) and stage III (2.9).  相似文献   

3.
Laboratory production during the life span of Euphausia pacifica was measured directly (as the sum of growth, molting and reproduction) and indirectly (as assimilation minus metabolism and leakage) to test the hypothesis that weight-specific production is a constant for all sizes. Euphausiids were collected in Puget Sound, Washington State, USA, from September 1973 to March 1978. Equations were determined (in terms of carbon and nitrogen at 8° and 12° C) expressing the relationships between body weight and the daily rates of growth, molting, reproduction, ingestion and metabolism. The allometric equation (R=aW b ) best related body weight (W) to the rate (R) for growth, molting, ingestion, respiration and excretion for life stages from late larvae through adults. As predicted by the original above hypothesis, the weight-specific coefficient (b) was close to 1.0 for ingestion and excretion; in contrast, b was 0.62 for growth, and 0.77 to 0.85 for molting and respiration. The Q10 s also varied: 3.5 for growth, 2.4 for molting, about 3.0 for ingestion, and 2.0 for respiration and excretion. Assimilation efficiencies, for all weights and at both temperatures, were 81.3% of carbon and 85.9% of nitrogen ingested. The relationships between rate and body weight of early larvae for growth and molting were linear, as was the relationship for reproduction in adults. Weight-specific production was higher by I to 2% at 12° than 8° C for all life stages, and was 2 to 4% for carbon and 2 to 6% for nitrogen in adults, but 13 to 17% for carbon and 14 to 15% for nitrogen in early furcilia larvae. The null hypothesis was rejected for production measured directly, but would have been accepted if only an indirect measurement of nitrogen production had been considered. Clearly, indirect measurement incorporates all errors of measurement and assumption and makes interpretation difficult.  相似文献   

4.
The effects of temperature and body size on the intermolt periods (molting frequencies) of the North Pacific euphausíid Euphausia pacifica and the Mediterranean forms of Meganyctiphanes norvegica, Euphausia krohnii, Nematoscelis megalops, and Nyctiphanes couchii were studied under controlled conditions in the laboratory. Mean intermolt periods for E. pacifica and M. norvegica were inversely and linearly related to temperature, over temperature ranges which the euphausiids normally encounter in the sea. At higher temperatures there was a tendency for three size groups of M. norvegica to approach a minimum intermolt period independent of temperature. M. norvegica cycled for different time periods between 13° and 18°C molted regularly at mean frequencies which would be expected if the animals had been held constantly at the timeweighted means of the two experimental temperatures. The increase in mean intermolt period per unit weight was faster in small, fast-growing M. norvegica than in large, slow-growing adults. This relationship was corroborated by following the changes in the intermolt period of an actively growing individual N. couchii over an 11 month period. Neither feeding nor the time of year of collection affected the molting frequency as long as temperature and animal weight were held constant. No tendency was found for euphausiids of the same species and/or size, and from the same collection, to molt on the same night. Molting occurred at night 80 to 90% of the time for all species, over the temperature ranges normally experienced by the euphausiids in the sea, and over all animal weights tested. There appeared to be a weakening of the night-time molting rhythm at low temperatures. Although neither temperature nor anímal weight substantially affected the night-time molting rhythm, both affected the mean intermolt period. Therefore, both temperature and body size apparently act together to adjust the length of the intermolt period of each individual in increments of whole days, but they exert little control over time of molting within any 24h period. No information was obtained regarding the factors which specify night-time molting over daytime molting within any 24 h period; however, regulation of certain hormone activities is probably involved.  相似文献   

5.
Complete carbon and nitrogen budgets at 8° and 12° C over the life span of Euphausia pacifica were constructed from data published in the foregoing publication. The relative magnitudes of physiological functions such as metabolism and growth for the different life history stages were compared. The carbon net growth efficiency (NGE) for E. pacifica increased to a maximum of 60 to 74% at Calyptopis 3 (a larval stage) and then decreased rapidly to a level of 10 to 12% for adults. The cumulative amount of assimilated carbon or nitrogen in reproductive products was equal to that in growth. The cumulative net production efficiency (tissue plus molts plus reproductive products) is 24 to 29%, and is slightly higher for nitrogen than for carbon. For juveniles and adults, the largest proportion (40 to 65%) of assimilated material is used in metabolism, and is about 10% higher at 8° than 12° C. The difference between measured and predicted ingestion (the sum of metabolism, leakage, defecation, growth, molting and reproduction) probably results from poorly understood aspects of zooplankton physiology (e.g. the effect of body weight on leakage). Nitrogen budgets at 8° C for furcilia bulanced the best, with deviations of less than 10%. In general, predicted ingestion was increasingly less than measured ingestion as body weight and temperature increased. Possible omissions or errors in assumptions or methods that may cause the imbalances are discussed.  相似文献   

6.
Continuous temperature measurements were made in a typical South East African estuary. Mean summer (November to March) temperatures were in the range 19° to 24°C, and in winter (June to August) from 13° to 16°C. Large daily temperature fluctuations of 6° to 10°C occurred in summer; these appear to result from tidal movement of cool sea water into the estuary. In winter, temperature fluctuations were much smaller (3° to 5°C). The burrowing prawn Upogebia africana (Obtmann) was found to have an upper lethal temperature of 29°C in both winter and summer. The resistance time of prawns to temperatures above 30°C was much greater in summer than in winter. It was possible to acclimate winter prawns and increase their resistance time to a level comparable to that of summer individuals. A latent period of 40 h occurred before acclimation effects were detectable. Long-term exposure of prawns to high temperatures did not increase their resistance above that of summer prawns. Water at a temperature above this upper lethal temperature is not pumped through the burrows. This avoidance behaviour considerably increases the ability of U. africana to withstand short-lived temperature extremes.  相似文献   

7.
Grunion Leuresthes tenuis (Ayres), an atherine fish, were reared, from artificially fertilized eggs to 160 days posthatching, at temperatures from 18.0° to 25.4° C. The rearing was carried out in five 60 l rectangular containers and two hard moulded plastic pools holding 60 and 450 l. The growth rate was highly correlated with temperature at least up to metamorphosis. Thereafter, the effect of temperature on growth, within lethal limits, appeared to be lost or at least masked by other factors. At low densities, after metamorphosis, growth was proportional to the population density. Size and shape of the rearing containers also influenced the growth rate.  相似文献   

8.
Poleck  T. P.  Denys  C. J. 《Marine Biology》1982,70(3):255-265
The effect of temperature on molting, growth, and maturation rates was studied on laboratory-maintained Euphausia superba. The length of intermolt periods (IMP's) was inversely proportional to temperature (20.10 d, SD=1.60, at 0.12°C; 16.87 d, SD=1.68, at 0.97°C; and 12.48 d, SD=0.90, at 4.48°C), and directly proportional to krill size at 0.12°C and 0.97°C. For individually maintained krill the maximum growth rate at 4.48°C (0.068 mm d-1) was nearly twice that at 0.68°C (0.037 mm d-1). There was no observable temperature effect on maturation rates. The maturation changes of juveniles at all temperatures indicated that more than two years are probably required to reach maturity. Mature males and females regressed to immature forms, suggesting that E. superba may reproduce in successive years. These results and previously reported field and laboratory data for E. superba and other euphausiid species suggest a 4+ year life span for this species.This work was supported by NSF grant DPP 76-23437  相似文献   

9.
Environmental control of the breeding of three boreo-arctic cirripedes   总被引:1,自引:0,他引:1  
Three species of barnacles with boreo-aretic distribution were shown to require maintenance for several weeks below a critical temperature before the breeding condition could be attained. The temperatures critical for Balanus balanoides (L.) Balanus balanus (L.) and Balanus crenatus (Bruguière) were found to be between 10° and 12°C, 10° and 14°C, and at about 17°C, respectively. Although the strong influence of continuous light and the weak influence of continued feeding in delaying the onset of breeding in B. balanoides were confirmed, there remained some outstanding anomalies between the breeding behaviour of this species under laboratory conditions and between the tide marks. It was found impossible to initiate breeding by the application of conditioning procedures significantly in advance of the time of the normal Autumn breeding season in B. balanoides. Breeding appears to be inhibited, independently of external conditions, for a set period after the preceding brood cycle. Evidence points to a similar, largely endogenous, control of breeding in B. balanus which also breeds once annually, but not in B. crenatus which breeds continuously so long as food and temperature levels permit.  相似文献   

10.
The elimination of 3 radionuclides from Euphausia pacifica was measured over a 5 month period. The biological half-lives for 65Zn, 137Cs, and 144Ce, calculated after the euphausiids had ingested radioactive Artemia nauplii, were found to be 140 days, 6 days, and 7.5 h, respectively. The percentages of body burdens lost in molts were greatest for the fission products, 144Ce (21%) and 137Cs (7%), and least for 65Zn (1%). Elimination of the isotopes in the feces could not be followed because of the difficulty in collecting fecal material for analysis; however, 1 sample collected 2 months after the beginning of the elimination experiment had no measurable radioactivity. Loss of 65Zn from molts and time to disintegration of the molts were found to be temperature dependent over a 5° to 15°C range, and the sinking rate of molts was both temperature and salinity dependent. Calculations showed that, in areas in the North Pacific outside the influence of upwelling, percentage 65Zn loss from sinking molts (before disintegration of the molts) was likely to be the same throughout the year, since the molts would be exposed to about the same mean temperature in the water column in all seasons. Even though temperature structure in the upper layers changes with season, mean temperatures change very little when calculated over the sinking distance of intact molts. Intact molts would sink to slightly over 400 m in the absence of turbulence, and would lose 87% of their 65Zn by the time they reached this depth. Sinking molts thus might contribute substantially to the vertical transport of 65Zn in the sea. If loss of 65Zn in fecal pellets is assumed to be small under our experimental conditions, and molting loss is only 1% of 65Zn body burden, the major mechanism of 65Zn loss from euphausiids feeding on non-radioactive food must be isotopic exchange with the water. Approximately 96% of the initial body burden was eliminated over a period of 5 months.Supported by USAEC research contract AT (45-1)1830, PHS grant ES00026, and a Richland Graduate Fellowship to S. W. Fowler.  相似文献   

11.
J. Vidal 《Marine Biology》1980,56(2):135-146
Developmental time and stage duration for Calanus pacificus Brodsky and Pseudocalanus sp. and the rate of loss of body carbon by molting for C. pacificus were estimated for copepodite stages cultured under various combinations of phytoplankton concentration and temperature. Mean development time and stage duration for C. pacificus decreased hyperbolically with increasing food concentration, and the minimum time required for reaching a given stage decreased logarithmically with a logarithmic increase in temperature. Low temperature retarded the development of early stages proportionally more than that of late stages, and stage duration increased logarithmically with increasing body weight. Therefore, copepodite development was not isochronal. The rate of loss of body carbon by molting was small, ranging from 0.2 to 2% day-1. This rate increased hyperbolically with food concentration and was linearly related to the growth rate. The critical food concentration for the rates of development and molting increased with temperature and stage of development, but these rates were less dependent on food concentration than the growth rate. The development rate of Pseudocalanus sp. was higher than that of C. pacificus, and was less influenced by changes in food concentration and temperature. It is postulated that the inverse relationship between temperature and body size results from a differential effect of temperature and body size on the rates of growth and development. That is, with increasing body size the growth rate tends to become temperature-independent, but the development rate remains proportional to temperature. Thus, copepodites growing at low temperature can experience a greater weight increment between molting periods than individuals growing at high temperature, because the growth rate is similar at all temperatures but stage duration is longer at low temperature.Contribution No. 1128 from the Department of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

12.
Oxygen consumption of 3 species of Patella was measured in air and water at various temperatures. Measurements at constant temperature over a full tidal cycle showed no tidal or light-dark rhythms. Measurements under conditions simulating natural tidal, temperature and day-night cycles allowed calculation of daily respiratory energy budgets. P. cochlear occurs low on the shore, but experiences a food shortage due to intense intraspecific competition. Its rate of respiration is moderate, but metabolic expenditure is kept low because exposure to air is brief and body temperatures seldom rise above 23°C. P. cochlear has a respiratory rate-temperature (R-T) curve which peaks at 20°C and forms a plateau between 20° and 32.5°C. The midshore P. oculus has abundant food and adopts an exploitative strategy. Growth rate is very high, and this high turnover of energy is linked with a high metabolic rate, high Q10 (temperature coefficient) values, high body temperatures during the day-time low tide, and a respiratory R-T curve peaking at 32.5°C. Small P. oculus occur mainly in intertidal pools and respire faster in water, while larger individuals occur on bare rocks and respire faster in air over the upper temperature range. In contrast, the upper-shore P. granularis has little food, and conservation of energy is essential, particularly as its growth rate is moderate and its reprocurve output high. Respiratory losses are reduced by suppression of the R-T curve and low Q10 values, resulting in relative independence of temperature. Small P. granularis occur low on the shore and respire slower in water. Larger individuals occur at high levels due to migration, and respire slower in air. This further reduces respiratory energy losses. The patterns of respiration in these 3 species are thus related to food availability, resulting in exploitative or conservationist strategies.  相似文献   

13.
The life cycle of the hydroidClytia attenuata (Calkins) (Calyptoblastea: Campanulariidae) has been completed in the laboratory including development of the medusa, previously described asPhialidium lomae Torrey (Leptomedusae: Campanulariidae). Under laboratory conditions, the hydroid exhibits some morphological variation. Characteristic branching of the hydroid occurs at temperatures between 17° to 19°C. At 13° to 15°C the colonies are unbranched and cannot be distinguished fromClytia cylindrica L. Agassiz. Young medusae are similar to other young species ofPhialidium. Development to the adult form requires 25 to 30 days at 17° to 24°C. The adult medusae are 6 to 10 mm in diameter, watch-glass shaped, and have 20 to 28 tentacles. Based on the adult medusa,Clytia attenuata is maintained as a valid species.  相似文献   

14.
Sand shrimp, Crangon septemspinosa Say, are important to the trophic dynamics of coastal systems in the northwestern Atlantic. To evaluate predatory impacts of sand shrimp, daily energy requirements (J ind.–1 day–1) were calculated for this species from laboratory estimates of energy losses due to routine (RR), active (RA), and feeding (RSDA) oxygen consumption rates (J ind.–1 h–1), coupled with measurements of diel motile activity. Shrimp used in this study were collected biweekly from the Niantic River, Connecticut (41°33N; 72°19W) during late spring and summer of 2000 and 2001. The rates of shrimp energy loss due to RR and RA increased exponentially with increasing temperature, with the magnitude of increase greater between 6°C and 10°C (Q10=3.01) than between 10°C and 14°C (Q10=2.85). Rates of RR doubled with a twofold increase in shrimp mass, and RSDA was 0.130 J h–1+RR, irrespective of shrimp body size. Shrimp motile activity was significantly greater during dark periods relative to light periods, indicating nocturnal behavior. Nocturnal activity also increased significantly at higher temperatures, and at 20°C shifted from a unimodal to a bimodal pattern. Laboratory estimates of daily metabolic expenditures (1.7–307.4 J ind.–1 day–1 for 0.05 and 1.5 g wet weight shrimp, respectively, between 0°C and 20°C) were combined with results from previous investigations to construct a bioenergetic model and make inferences regarding the trophic positioning of C. septemspinosa. Bioenergetic model estimates indicated that juvenile and adult shrimp could meet daily energy demands via opportunistic omnivory, selectively preying upon items of high energy content (e.g. invertebrate and fish tissue) and compensating for limited prey availability by ingesting readily accessible lower energy food (e.g. detritus and plant material).Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by J.P. Grassle, New Brunswick  相似文献   

15.
R. Kenny 《Marine Biology》1969,4(3):219-223
The resistance to high temperatures of two species of intertidal tube-dwelling polychaete worms has been tested to show seasonal and geographic variations. The summer 50% survival temperature at Beaufort, North Carolina, was 42.5 °C for Diopatra cuprea (Bosc) and 40.5 °C for Clymenella torquata (Leidy). Winter 50% survival temperatures for both species at Beaufort were approximately 4.0 C° lower. Both species showed a geographic difference in 50% survival temperature of more than 4.0 C° between North Carolina and Massachusetts in summer. D. cuprea from the Mississippi coast showed a lower survival temperature, probably due to combined temperature and salinity effects. Laboratory acclimation of C. torquata from Beaufort at low temperatures, during summer months, produced experimental results similar to those from winter animals. The seasonal differences in temperature tolerance are phenotypic expressions of a physiological response which can be related to environmental temperature patterns.  相似文献   

16.
Veligers ofCrepidula fornicata (L.) were reared for 12 days at constant temperatures of 15°, 20°, 25°, 30° and 35°C, and at 5 C° daily cycles of equal periodicity (COEP) over the temperature ranges 15° to 20°C, 20° to 25°C, 25° to 30°C and 30° to 35°C. COEP consisted of equal periods (6 h) of maximum temperature, minimum temperature, and uniformly increasing and decreasing temperature each 24 h period. Survival was high and not influenced by cyclic or constant temperature from 15° to 30°C. At 35°C and COEP 30° to 35°C, all larvae died before Day 6. Shell growth rate increased markedly over the range 15° to 25°C, and growth rates at cyclic temperatures in this range were intermediate between growth rates at the corresponding constant temperatures. Larvae reared at COEP 15° to 20°C and COEP 30° to 35°C had discontinuities in their shells due to inhibition of shell secretion during the adverse part of each temperature cycle. Groups ofc. fornicata veligers were exposed for 2 days to daily temperature cycles of equal and unequal periodicity in the critical 30° to 35°C range. [Cycles of unequal periodicity (COUP) consisted of unequal periods (varying between 3 and 15 h) of maximum and minimum temperature and uniformly increasing and decreasing temperature each 24 h period.] These veligers showed shell growth although their body tissue declined, as indicated by decreasing carbon content per larva. Least shell growth and most body tissue loss occurred in those cycles with the longest exposure to higher temperature. Larvae exposed for arious days to the mildest 30° to 35°C COUP (15 h at 30°C, 3 h increasing temperature, 3 h at 35°C and 3 h decreasing temperature) recovered and resumed normal growth when transferred to constant 30°C, but their growth was retarded in proportion to the number of days in the temperature cycle. Rates of shell growth of veligers in temperature cycles show an immediate effect of environmental temperature, while changes in carbon content per larva better reflect the effects of temperature on general metabolism and survival.  相似文献   

17.
Juvenile shrimp, Crangon crangon L., were maintained in water-soluble crude oil fractions at 10°, 15° and 20°C. During chronic exposure to oil fractions, a reduction in respiration and growth rate occurred which was related to strength of the extract. Mortality increased with strength of oil fraction and was highest at 20°C. Calculation of carbon budgets indicated that the extract reduced net carbon turnover at each temperature. Physiological consequences resulting from exposure to the oil fractions are discussed.  相似文献   

18.
Laboratory culture of 40 Octopus bimaculoides from April 1982 to August 1983 through the full life cycle at 18°C vs 23°C provided information on the growth, reproductive biology and life span of this California littoral octopus. At 18°C, the cephalopods grew from a hatchling size of 0.07 g to a mean of 619 g in 404 d; the largest individual was 872 g. Octopuses cultured at 23°C reached their highest mean weight of 597 g in 370 d; the largest individual grown at this temperature was 848 g after 404 d. Growth data revealed a two-phase growth pattern: a 5 mo exponential phase followed by a slower logarithmic (power function) phase until spawning. At 5 mo octopuses grown at 23°C were over three times larger than their 18°C siblings. However, beyond 6.5 mo, growth rates were no higher at 23°C than at 18°C. At 13.5 mo, the mean weight of the 18°C group surpassed that of the 23°C group. The slope of the length/weight (L/W) relationship was significantly different for the two temperature regimes, with the 23°C octopuses weighing 18% less than their 18°C siblings at a mantle length of 100 mm. Females weighed more than males at any given mantle length. Males grew slightly larger and matured before females. The L/W relationship indicated isometric body growth throughout the life cycle. Higher temperature accelerated all aspects of reproductive biology and shortened life span by as much as 20% (from approximately 16 to 13 mo). O. bimaculoides has one of the longest life cycles among species with large eggs and benthic hatchlings. Extrapolations to field growth are made, and the possible effects of temperature anomalies such as El Niño are discussed.  相似文献   

19.
The bioenergetic basis of the biannual reproductive cycle of the solitary tunicate Styela plicata was investigated in order to evaluate hypotheses concerning the lack of larval settlement in summer. The rate of ingestion and absorption efficiency were measured in order to provide an estimate of the rate at which material was made available for maintenance, growth, and reproduction. At a given temperature the rate of ingestion was proportional to the 0.7 power of wet mass. the ingestion rate increased rapidly with increasing temperature between 12° and 18°C (Q103), but was independent of temperature between 18° and 28°C. Absorption efficiency was independent of temperature and body size and averaged approximately one-third for both carbon and nitrogen. Metabolic maintenance costs were estimated from measurements of oxygen consumption and excretion of ammonia and urea reported for s. plicata. These require only 18±11% of the carbon and 37±22% of the nitrogen absorbed from the gut of S. plicata over the temperature range 12° to 28°C. Metabolic maintenance makes no excessive demands on the material absorbed in the gut at a particular time of year, and a surplus of carbon and nitrogen substrate is available throughout the year for growth and reproduction. Predation on larvae and young adults may be responsible for the low rate of settlement observed in summer months.  相似文献   

20.
Lethal and certain sublethal effects of salt brines on adults and subadults of two species of penaeid shrimps, Penaeus setiferus and P. aztecus, were examined to evaluate the potential impact of ocean disposal of brine from solution mining of salt domes. Brines, prepared from dome salt or synthetic sea salt diluted with Brazos River (Texas, USA) water or deionized water, were mixed with seawater and dalivered from a proportional diluter to shrimp held (usually) at 25°C. For each combination of species, salt, and diluent, 90-individual trials were conducted in the fall and spring. The effects of temperature were evaluated separately. Median lethal time was strongly dose-dependent: Median lethal concentrations at 48 and 96 h were 654±42 (95% confidence interval) and 540±41 mOsm kg-1 above ambient seawater, respectively, well above the worst-case predictions for the brine-disposal area. Salt type, diluent type, season or species did not significantly affect brine lethality. Mortality was higher for both species at 30°C and lower for P. setiferus and higher for P. aztecus below 25°C. Lethal brine doses produced tachycardia after 6 (P. setiferus) or 12 h (P. aztecus) of brine exposure. Opacity of abdominal muscles increased with brine concentration. Lethal brine concentrations evoked hyperactivity after 0.75–1.5 h of exposure, significant failure to orient after 6 h and a reduction in general activity after 12 h. Behavior and osmoregulation suggest higher sensitivities to brines made with dome salt or river water and in shrimp tested during the cool seasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号