首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   

2.
If trends in air quality are to be interpreted in terms of changes in pollutant emissions, the impact of meteorology on those trends needs to be removed. There is good reason to suspect that changes in the weather in the mideastern U.S. over the last 30 years may have contributed to the observed reduction in visual air quality. This report represents an attempt to extract changes in air quality which were not the result of changes in local meteorology. This analysis focuses on changes in visibility under meteorological conditions ‘typical’ for each locale and season over the period 1948–1981. Trends in visual air quality are summarized in terms of a weighted linear least-squares estimate of the percentage change in visibility over the entire 34 year period within each season and at each of 15 representative sites. Confidence limits associated with these percentage changes are evaluated.This meteorologically-adjusted analysis, which focuses on midrange visibility (60th percentile), is more optimistic than those which do not consider meteorological factors or an error analysis. At the metropolitan sites and in the more rural areas, declines in the summertime visibility appear moderate, and significant improvements in visual air quality are seen in the first and fourth quarters. In contrast, the fast growing, medium-sized urban areas do not show a significant improvement in the fall or winter, and the decline in spring and summer visibility levels at these sites is evident even after adjustment for changes in local meteorology.  相似文献   

3.
For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency’s (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a “delta deciview” approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000–2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S.

Implications: Changing the approach for tracking visibility in the Regional Haze Rule allows the EPA, states, and the public to track visibility on days when reductions in anthropogenic emissions have the greatest potential to improve the view. The calculations involved with the recommended metric can be incorporated into the routine IMPROVE (Interagency Monitoring of Protected Visual Environments) data processing, enabling rapid analysis of current and future visibility trends. Natural visibility conditions are important in the calculations for the recommended metric, necessitating the need for additional analysis and potential refinement of their values.  相似文献   


4.
This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001-2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988-1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

5.
6.
Trends in fine particulate matter <2.5 microm in diameter (PM2.5) and visibility in the Southeastern United States were evaluated for sites in the Interagency Monitoring of Protected Visual Environments, Speciated Trends Network, and Southeastern Aerosol Research and Characterization Study networks. These analyses are part of the technical assessment by Visibility Improvement-State and Tribal Association of the Southeast (VISTAS), the regional planning organization for the southeastern states, in support of State Implementation Plans for the regional haze rule. At all of the VISTAS IMPROVE sites, ammonium sulfate and organic carbon (OC) are the largest and second largest contributors, respectively, to light extinction on both the 20% haziest and 20% clearest days. Ammonium nitrate, elemental carbon (EC), soils, and coarse particles make comparatively small contributions to PM2.5 mass and light extinction on most days at the Class I areas. At Southern Appalachian sites, the 20% haziest days occur primarily in the late spring to fall, whereas at coastal sites, the 20% haziest days can occur through out the year. Levels of ammonium sulfate in Class I areas are similar to those in nearby urban areas and are generally higher at the interior sites than the coastal sites. Concentrations of OC, ammonium nitrate, and, sometimes, EC, tend to be higher in the urban areas than in nearby Class I areas, although differences in measurement methods complicate comparisons between networks. Results support regional controls of sulfur dioxide for both regional haze and PM2.5 implementation and suggest that controls of local sources of OC, EC, or nitrogen oxides might also be considered for urban areas that are not attaining the annual National Ambient Air Quality Standard for PM2.5.  相似文献   

7.
It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10-2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children's Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

8.
Abstract

This study is a part of an ongoing investigation of the types and locations of emission sources that contribute fine particulate air contaminants to Underhill, VT. The air quality monitoring data used for this study are from the Interagency Monitoring of Protected Visual Environments network for the period of 2001–2003 for the Underhill site. The main source-receptor modeling techniques used are the positive matrix factorization (PMF) and potential source contribution function (PSCF). This new study is intended as a comparison to a previous study of the 1988–1995 Underhill data that successfully revealed a total of 11 types of emission sources with significant contributions to this rural site. This new study has identified a total of nine sources: nitrate-rich secondary aerosol, wood smoke, East Coast oil combustion, automobile emission, metal working, soil/dust, sulfur-rich aerosol type I, sulfur-rich aerosol type II, and sea salt/road salt. Furthermore, the mass contributions from the PMF identified sources that correspond with sampling days with either good or poor visibility were analyzed to seek possible correlations. It has been shown that sulfur-rich aerosol type I, nitrate aerosol, and automobile emission are the most important contributors to visibility degradation. Soil/dust and sea salt/road salt also have an added effect.  相似文献   

9.
Abstract

The U.S. Clean Air Act, amended in 1990, mandated the establishment of the Grand Canyon Visibility Transport Commission (GCVTC). The commission is required to submit a report to the U.S. Environmental Protection Agency addressing visibility issues in the region, including "the establishment of clean air corridors, in which additional restrictions on increases in emissions may be appropriate to protect visibility in affected Class I areas." This paper presents a methodology to identify candidate geographic areas for consideration for Clean Air Corridor (CAC) status for Colorado Plateau Class I areas. The methodology uses thousands of model determined trajectories over a five year period (1988 to 1992) to indicate the paths taken by air that arrives during clean air conditions at Class I areas. These clean air back-trajectories identify upwind areas where pollution emissions could jeopardize currently pristine visibility. Using this methodology, six candidate areas are identified, ranging in size from 75,000 to 506,000 square miles, and permitting varying levels of visibility protection for clean air days at Grand Canyon, Canyonlands, and Petrified Forest National Parks. Assuming effective emissions management of the CAC, the larger the CAC, the greater the visibility protection during clean air conditions.  相似文献   

10.
Different aspects of visibility degradation problems in Brisbane were investigated through concurrent visibility monitoring and aerosol sampling programs carried out in 1995. The relationship between the light extinction coefficients and aerosol mass/composition was derived by using multiple linear regression techniques. The visibility properties at different sites in Brisbane were found to be correlated with each other on a daily basis, but not correlated with each other hour by hour. The cause of scattering of light by moisture (bsw) was due to sulphate particles which shift to a larger size under high-humidity conditions. The scattering of light by particulate matter (bsp) was found to be highly correlated with the mass of fine aerosols, in particular the mass of fine soot, sulphate and non-soil K. For the period studied, on average, the total light extinction coefficient (bext) at five sites in Brisbane was 0.65×10−4 m−1, considerably smaller than those values found in other Australian and overseas cities. On average, the major component of bext is bsp (49% of bext), followed by bap (the absorption of light, mainly by fine soot particles, 28%), bsg (Rayleigh scattering, 20%) and bsw (3%). The absorption of light by NO2 (bag) is expected to contribute less than 5% of bext. On average, the percentage contribution of the visibility degrading species to bext (excluding bag) were: soot (53%), sulphate (21%), Rayleigh scattering (20%), non-soil K (2%) and humidity (3%). In terms of visibility degrading sources, motor vehicles (including soot and the secondary products) are expected to contribute more than half of the bext (excluding bag) in Brisbane on average, followed by secondary sulphates (17%) and biomass burning (10%).  相似文献   

11.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


12.
As part of a study examining the technical basis for a secondary national ambient air quality standard for fine particulate matter to protect visibility, we reviewed available data on atmospheric aerosol and visibility in the eastern U.S. This paper presents the results of that visibility and aerosol characterization.

Analysis of airport visibility data indicates that the annual median visual ranges in the East are in the 16-25 km range. In the absence of a "reference method," limited measurements of visibility using various types of instruments provide data generally in agreement with the airport visibility estimates when a contrast threshold of 0.05 is assumed in calculating visual range from the instrumental measurements.

Both long- and short-term aerosol measurements have yielded consistent results; however, because of the differences in instrumentation and laboratory analytical techniques among various studies, data often are not directly comparable. The measured annual average fine particulate matter mass concentration is about 18 μg/m3 in the rural East; during summer it increases to about 23 μg/m3. If all the sulfur in the fine mass is assumed to exist as ammonium sulfate, it would constitute 46 percent of the annual mean and about 60 percent of the summer mean fine mass concentrations. Carbon and volatiles, including water, are believed to constitute significant fractions of the fine mass; however, there are little data quantifying their contributions to fine mass and visibility impairment. Additional long-term measurements of visibility and fine aerosol and its various components are necessary to completely characterize visibility and aerosol in the East.  相似文献   

13.
Mount Washington, NH in the White Mountain National Forest, is flanked to the north-northeast and south by two Class I Wilderness areas, the Great Gulf and Presidential Range-Dry River Wildernesses, respectively. The Clean Air Act protects Class I Area natural resource values from air pollution. Aerosol sulfate, a fine particulate component that is often transported long distances, is a known contributor to visibility degradation and acidic deposition. We examined summertime fine particulate aerosol mass and sulfate, strong acidity and ammonium concentrations from 1988 to 2007 on Mount Washington at two elevations, 452 and 1540 m (msl). The former site is often within, and the latter at the interface of, the planetary boundary layer. Comparisons of sampling interval durations (10 and 24 h) and site vs. site are made. We also examine the extent to which aerosol sulfate is neutralized.Ten hour (daytime) compared to 24 h samples have higher mass and aerosol sulfate concentrations, however paired samples are well correlated. Fine mass concentrations compared between the 452 m and 1540 m sites (standard temperature and pressure corrected) show a weak positive linear relationship with the later being approximately 32% lower. We attribute the lack of a strong correlation to the facts that the 1540 m site is commonly at the interface of and even above the regional planetary boundary layer in summer and that it can intercept different air masses relative to the 452 m site. Sulfate is ~18% lower at the higher elevation site, but comprises a greater percentage of total fine mass; 42% compared to 37% for the high and low elevation site, respectively. Aerosol strong acidity was found to increase with increasing sulfate concentrations at both sites. Further the ratio of hydrogen to sulfate ion was greater in 24 h than 10 h samples at the higher elevation site likely due to overnight transport of fresh acidic aerosols.  相似文献   

14.
Ammonium (NH(4)(+)) concentrations in air and precipitation at the Institute of Ecosystem Studies (IES) in southeastern New York, USA declined over an 11-year period from 1988 to 1999, but increased from 1999 to 2001. These trends in particulate NH(4)(+) correlated well with trends in particulate SO(4)(2-) over the 1988-2001 period. The NH(4)(+) trends were not as well correlated with local cattle and milk production, which declined continuously throughout the period. This suggests that regional transport of SO(4)(2-) may have a greater impact on concentrations of NH(4)(+) and subsequent deposition than local agricultural emissions of NH(3). Ammonium concentrations in precipitation correlated significantly with precipitation SO(4)(2-) concentrations for the 1984-2001 period although NH(4)(+) in precipitation increased after 1999 and SO(4)(2-) in precipitation continued to decline after 1999. The correlation between NH(4)(+) and SO(4)(2-) was stronger for particulates than for precipitation. Particulate NH(4)(+) concentrations were also correlated with particulate SO(4)(2-) concentrations at 31 of 35 eastern U.S. CASTNet sites that had at least 10 years of data. Air concentrations of NH(4)(+) and SO(4)(2-) were more strongly correlated at the sites that were located within an agricultural landscape than in forested sites. At most of the sites there was either no trend or a decrease in NH(4)(+) dry deposition during the 1988-2001 period. The sites that showed an increasing trend in NH(4)(+) dry deposition were generally located in the southeastern U.S. The results of this study suggest that, in the northeastern U.S., air concentrations of NH(4)(+) and subsequent deposition may be more closely linked to SO(4)(2-) and thus SO(2) emissions than with NH(3) emissions. These results also suggest that reductions in S emissions have reduced NH(4)(+) transport to and NH(4)(+)-N deposition in the Northeast.  相似文献   

15.
Systematic measurement of fine particulate matter (aerodynamic diameter less than 2.5 microm [PM2.5]) mass concentrations began nationally with implementation of the Federal Reference Method (FRM) network in 1998 and 1999. In California, additional monitoring of fine particulate matter (PM) occurred via a dichotomous sampler network and several special studies carried out between 1982 and 2002. The authors evaluate the comparability of FRM and non-FRM measurements of PM2.5 mass concentrations and establish conversion factors to standardize fine mass measurements from different methods to FRM-equivalent concentrations. The authors also identify measurements of PM2.5 mass concentrations that do not agree with FRM or other independent PM2.5 mass measurements. The authors show that PM2.5 mass can be reconstructed to a high degree of accuracy (r2 > 0.9; mean absolute error approximately 2 microg m(-3)) from PM with an aerodynamic diameter < or =10 microm (PM10) mass and species concentrations when site-specific and season-specific conversion factors are used and a statewide record of fine PM mass concentrations by combining the FRM PM2.5 measurements, non-FRM PM2.5 measurements, and reconstructions of PM2.5 mass concentrations. Trends and spatial variations are evaluated using the integrated data. The rates of change of annual fine PM mass were negative (downward trends) at all 22 urban and 6 nonurban (Interagency Monitoring of Protected Visual Environments [IMPROVE]) monitoring locations having at least 15 yr of data during the period 1980-2007. The trends at the IMPROVE sites ranged from -0.05 to -0.25 microg m(-3) yr(-1) (median -0.11 microg m(-3) yr(-1)), whereas urban-site trends ranged from -0.13 to -1.29 microg m(-3) yr(-1) (median -0.59 microg m(-3) yr(-1)). The urban concentrations declined by a factor of 2 over the period of record, and these decreases were qualitatively consistent with changes in emissions of primary PM2.5 and gas-phase precursors of secondary PM. Mean PM2.5 mass concentrations ranged from 3.3 to 7.4 microg m(-3) at IMPROVE sites and from 9.3 to 37.1 microg m(-3) at urban sites.  相似文献   

16.
济南市大气水平能见度与环境污染相关性分析   总被引:1,自引:0,他引:1  
利用济南市2011年1月1日至12月31日大气水平能见度在线监测小时数据和对应细颗粒物(PM2.5)、PM2.5中碳组分(EC和OC)、挥发性有机物(VOC)及气象参数资料,分析污染物、气象参数等对能见度的影响。结果显示,相对湿度和PM2.5是影响能见度的主要因子,能见度与相对湿度及PM2.5浓度主要呈指对数关系。结合相对湿度条件对PM2.5浓度与能见度关系进行综合分析,得到相关经验模型公式,并利用2010年6月1日至11月30日的相应数据资料进行实例关系验证,结果表明,建立的经验模型公式有较好的实际应用价值。  相似文献   

17.
“Visibility and Fine Particles“, the fourth in a series of international specialty conferences on atmospheric visibility, was sponsored by the Air and Waste Management Association and the U.S. Environmental Protection Agency. The purpose of this conference was to provide a forum to disseminate the results of recent advances in visibility and fine particles. The 110 papers presented at the conference covered six topics: policy and regulatory issues, visibility and fine particle measurements, human perception of visibility, meteorological factors affecting visibility, economic valuation of visibility, and visibility and fine particle modeling and source apportionment. Eighty-five of those papers are included in the conference Transactions and are summarized in this article.  相似文献   

18.
An analysis of ozone (O3) concentrations and several other air quality-related variables was performed to elucidate their relationship with visibility at five urban and semi-urban locations in the southeast United States during the summer seasons of 1980-1996. The role and impact of O3 on aerosols was investigated to ascertain a relationship with visibility. Regional trend analysis over the 1980s reveals an increase in maximum O3 concentration coupled with a decrease in visibility. However, a similar analysis for the 1990s shows a leveling-off of both O3 and visibility; in both cases, the results were not statistically significant at the 5% level. A case study of site-specific trends at Nashville, TN, followed similar trends. To better understand the relationships between O3 concentration and visibility, the analysis was varied from yearly through daily to hourly averaged values. This increased temporal resolution showed a statistically significant inverse relationship between visibility and O3. Site-specific hourly r2 values ranged from 0.02 to 0.43. Additionally, by performing back-trajectory analysis, it was found that the visibility degraded by air mass migration over polluted areas.  相似文献   

19.
To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 microg/m3) compared with CPM (0.39 microg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3(-), SO4(2-) and Cl(-)) in urban areas. Implications: Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials: Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.  相似文献   

20.
Abstract

It will be many years before the recently deployed network of fine particulate matter with an aerodynamic diameter less than 2.5 [H9262]m (PM2.5) Federal Reference Method (FRM) samplers produces information on nonattainment areas, trends, and source impacts. However, data on PM2.5 and its major constituents have been routinely collected in California for the past 20 years. The California Air Resources Board operated as many as 20 dichotomous (dichot) samplers for PM2.5 and coarse PM (PM10–2.5). The California Acid Deposition Monitoring Program (CADMP) collected 12-h-average PM2.5 and PM10 from 1988 to 1995 at ten urban and rural sites and 24-h-average PM2.5 at five urban sites since 1995. Beginning in 1994, the Children’s Health Study collected 2-week averages of PM2.5 in 12 communities in southern California using the Two-Week Sampler (TWS). Comparisons of collocated samples establish relationships between the dichot, CADMP, and TWS samplers and the 82-site network of PM2.5 FRM samplers deployed since 1999 in California. PM mass data from the different monitoring programs have modest to high correlation to FRM mass data, fairly small systematic biases and negative proportional biases ranging from 7 to 22%. If the biases are taken into account, all of the programs should be considered comparable with the FRM program. Thus, historical data can be used to develop long-term PM trends in California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号