共查询到20条相似文献,搜索用时 0 毫秒
1.
The response of soil respiration (Rs) to nitrogen (N) addition is one of the uncertainties in modelling ecosystem carbon (C). We reported on a long-term nitrogen (N) addition experiment using urea (CO(NH2)2) fertilizer in which Rs was continuously measured after N addition during the growing season in a Chinese pine forest. Four levels of N addition, i.e. no added N (N0: 0 g N m−2 year−1), low-N (N1: 5 g N m−2 year−1), medium-N (N2: 10 g N m−2 year−1), and high-N (N3: 15 g N m−2 year−1), and three organic matter treatments, i.e. both aboveground litter and belowground root removal (LRE), only aboveground litter removal (LE), and intact soil (CK), were examined. The Rs was measured continuously for 3 days following each N addition application and was measured approximately 3–5 times during the rest of each month from July to October 2012. N addition inhibited microbial heterotrophic respiration by suppressing soil microbial biomass, but stimulated root respiration and CO2 release from litter decomposition by increasing either root biomass or microbial biomass. When litter and/or root were removed, the “priming” effect of N addition on the Rs disappeared more quickly than intact soil. This is likely to provide a point of view for why Rs varies so much in response to exogenous N and also has implications for future determination of sampling interval of Rs measurement. 相似文献
2.
The national Forest Health Monitoring (FHM) program requires protocols for monitoring soil carbon contents. In a pilot study, 30 FHM plots loblolly shortleaf (Pinus taeda L./Pinus echinata Mill.) pine forests across Georgia were sampled by horizon and by depth increments. For total soil carbon, approximately 40% of the variance was between plots, 40% between subplots and 20% within subplots. Results by depth differed from those obtained by horizon primarily due to the rapid changes in carbon content from the top to the bottom of the A horizon. Published soil survey information overestimated bulk densities for these forest sites. The measurement of forest floor depths as a substitute to sampling did not provide reliable estimates of forest floor carbon. Precision of replicate samples was approximately 10-30% for field duplicates and 5-10% for laboratory duplicates. Based on national indicator evaluation criteria, sampling by depth using bulk density core samplers has been recommended for national implementation. Additional procedures are needed when sampling organic soils or soils with a high percentage of large rock fragments. 相似文献
3.
The concentration of organic carbon, organic chlorine and chloride was determined in Swedish forest soil in the southern part of Sweden and the spatial distribution of the variables were studied. The concentration of organically bound chlorine was positively correlated to the organic carbon content, which is in line with previous studies. However, the spatial distribution patterns strongly indicate that some other variable adds structure to the spatial distribution of organic chlorine. The distribution patterns for chloride strongly resembled the distribution of organic chlorine. The spatial distribution of chloride in soil depends on the deposition pattern which in turn depends on prevailing wind-direction, amount of precipitation and the distance from the sea. This suggests that the occurrence of organic chlorine in soil is influenced by the deposition of chloride or some variable that co-varies with chloride. Two clearly confined strata were found in the area: the concentrations of organic chlorine and chloride in the western area were significantly higher than in the eastern area. No such difference among the two areas was seen regarding the carbon content. 相似文献
4.
Information about temporal changes in soil organic carbon (C) pools may be obtained indirectly from changes in input-output budgets of organically combined nutrients such as sulphur (S). Sulphur budgets were therefore evaluated for Northern Ireland (NI) for the period 1940-1990, inclusive. These budgets indicated that the land or soil had acted first as a sink but then as a source for S, and that reserves of soil S built up between 1940 and 1965 were totally depleted by the mid-1980s. Pooled data from six long-term soil-monitoring sites on undisturbed grassland suggested that negative S budgets from the late-1970s onwards had been due to the net mineralization of soil organic matter and thus were indicative of net losses of organic C from surface soil horizons. There was some evidence that the decline in rainfall and fertiliser S inputs from the mid-1960s may have precipitated the breakdown of soil organic matter. 相似文献
5.
Research on the terrestrial carbon cycle is an important component in the study of global change. Soil organic carbon, as the main part of the terrestrial carbon reservoir, plays an important role in the Earth's carbon cycle. To accurately estimate soil organic carbon storage, its composition and dynamic change must be determined. This presents a challenge to research on the soil carbon cycle, especially in China where the nationwide soil organic carbon reservoir largely remains unknown. This paper reports a research project that attempts to estimate the nationwide soil organic carbon reservoir. Data from 2473 soil profiles from the second national soil survey were collected and GIS technology was employed to quantify the national soil carbon reservoir. The analytical results show that the total amount of soil organic carbon is about 92.4 Pg (Pg = 10(15) g) and that the average carbon density is about 10.53 kg C m(-2). The spatial distribution of soil organic carbon was also analyzed and mapped. This study presents basic data and an analysis method for carbon-cycle studies and also provides scientific support for policy-making efforts to control CO2 emissions in China. 相似文献
6.
通过对森林碳汇发展背景的概述,分析了国际、国内森林碳汇项目开发现状,深入剖析了森林碳汇项目发展的制约因素和存在风险,并对森林碳汇项目的发展前景进行了展望,通过森林碳汇交易市场可以实现全球范围成本低、效益好的CO2减排效果,为实现全球环境、经济与社会的可持续发展创造条件. 相似文献
7.
The transport of organic and inorganic material in 10 Norwegian rivers has been monitored from 1990 to 1998. The suspended material in the rivers consisted of 40-80% organic materials. A major part of this was DOC with a C/ N mole ratio > 25. The C/N ratio of the organic material increases with increasing river flow when drained from forest-dominated catchments, in contrast to mountain dominated catchments where variation in runoff does not influence the C/N ratio. Laboratory experiments showed that more than 90% of the DOC remained in solution when salinity increased to 30. The flocculated and settled material contained less than 5% organic material with a C/N ratio of 6.7-12.4, comparable to C/N ratios in cultivated soils and coastal marine sediments. This confirms that only a minor amount of organic material carried to the sea by rivers settles in the coastal zone. 相似文献
8.
The pH of south Swedish soils have decreased considerably during the last 15–35 years. The decrease has occurred throughout the soil profile, not only in the rhizosphere, and is particularly marked in the originally less acid soils. The pH decrease was accompanied by considerable losses of exchangeable Na, K, Mg and Ca, as well as of Zn and (in the originally less acid soils) of Mn. The changes can be prognosticated from the current relationship between soil pH and base saturation and from budget calculations based on lysimeter data. 相似文献
9.
The largest carbon (C) pool in United States forests is the soil C pool. We present methodology and soil C pool estimates used in the FORCARB model, which estimates and projects forest carbon budgets for the United States. The methodology balances knowledge, uncertainties, and ease of use. The estimates are calculated using the USDA Natural Resources Conservation Service STATSGO database, with soil dynamics following assumptions based on results of site-specific studies, and area estimates from the USDA Forest Service. Forest Inventory and Analysis data and national-level land cover data sets. Harvesting is assumed to have no effect on soil C. Land use change and forest type transitions affect soil C. We apply the methodology to the southeastern region of the United States as a case study. 相似文献
10.
Pasture management can be effective at sequestering soil organic C. We determined the depth distribution of particulate organic C (POC), non-particulate organic C (NPOC), particulate-to-total organic C (POC-to-TOC) ratio, and particulate organic C-to-N (POC-to-N) ratio under pastures near Watkinsville, GA, USA. POC was highly related with total organic C (TOC), but became an increasingly larger portion of TOC near the soil surface, where both pools were greatest. POC and NPOC were (i) greater under pasture than under conservation-tillage cropland, (ii) greater when pasture was grazed than when hayed, (iii) marginally greater with higher fertilization of pasture, (iv) greater with higher frequency of endophyte infection of tall fescue, and (v) greater under increasing stand age of grass. Soil under pasture comparisons that had greater TOC content had (i) larger improvements in POC than in NPOC and (ii) lower POC-to-N ratios, suggesting improvement in biochemical soil quality, as well as soil C sequestration. 相似文献
11.
Contamination of soil with hydrocarbons occurs frequently when petroleum ducts are damaged. Restoration of those contaminated soils might be achieved by applying readily available organic material. An uncontaminated clayey soil sampled in the vicinity of a duct carrying diesel which ruptured recently, was contaminated in the laboratory and amended with or without maize or biosolids while production of carbon dioxide (CO(2)), dynamics of ammonia (NH(4)(+)), nitrates (NO(3)(-)), and total petroleum hydrocarbons (TPH) were monitored. The fastest mineralization of diesel, as witnessed by production of CO(2), was found when biosolids were added, but the amount mineralized after 100 days, approximately 88%, was similar in all treatments. Approximately 5 mg of the 48 mg TPH kg(-1) found in the sterilized soil at the beginning of the experiment could not be accounted for after 100 days. The concentration of TPH in the unsterilized soil decreased rapidly in all treatments, but the rate of decrease was different between the treatments. The fastest decrease was found in the soil amended with biosolids and approximately 30 mg TPH kg(-1) or 60% could not be accounted for within 7 days. The decrease in concentration of TPH at the onset of the incubation was similar in the other treatments. After 100 days, the concentration of TPH was similar in all soils and appear to stabilize at 19 mg TPH kg(-1) soil. It was concluded that biosolids accelerated the decomposition of diesel and TPH due to its large nutrient content, but after 100 days the amount of diesel mineralized and the residual concentration of TPH was not affected by the treatment applied. 相似文献
12.
Soils on the Mormon Trail have been compacted for over 150 years. Bulk density, carbon, and nitrogen samples were taken in 5-cm increments to 20 cm. Bulk density was determined using rings of known volume; total carbon and nitrogen with a LECO CHN-600. Total above ground biomass (AGB) samples were collected by clipping vegetation within a 0.25 m2 frame and were analyzed for carbon. Statistical comparisons were made using a t-test (alpha = 0.05). Bulk density was higher in the on-trail soils from 5 to 20 cm; soil carbon and C/N ratios were higher in the off-trail soils from 10 to 20 cm. AGB and AGB carbon is significantly less on the trail. Results indicate the compacted layer on the trail alters the soil carbon pool by limiting additions of fresh organic matter to the soil, limiting vegetative production, and by "pooling" carbon additions in the upper 10 cm of the soil. 相似文献
13.
为了解氮磷在不同类型水稻土发生层中的迁移特性,从浙江省宁波市和湖州市采集了27个水稻土主要发生层的原状土柱,通过饱和稳定流土柱运移试验,测定了氮和磷在不同发生层中的运移穿透曲线,用平均穿透点评估了NO-3-N、NH 4-N和PO3-4-P在各发生层中的穿透性.结果表明,氮和磷在各发生层中的穿透能力依次为:NO-3-N>NH 4-N>PO3-4-P;NO-3-N在各发生层中的穿透能力依次为:漂洗层(E层)>渗育层(P层)>表土层(A层)>腐泥层(M层)>潴育层(W层)>潜育层(G层)>犁底层(Ap层),NO-3-N的穿透能力主要与土壤饱和导水率有关,随饱和导水率增加而增强;NH 4-N穿透能力依次为:E层>P层>A层>W层>M层>Ap层>G层,NH 4-N穿透能力主要与饱和导水率和粘粒有关,迁移受粘粒明显阻滞;PO3-4-P穿透能力依次为:E层>W层>P层>M层>A层、Ap层>G层,PO3-4-P穿透能力主要受氧化铁等氧化物和粘粒的阻滞. 相似文献
14.
Boron-doped diamond (BDD) and Ti/Pt/PbO 2 anodes were utilized to perform the electrodegradation of synthetic samples containing humic acid in the presence of different organic and inorganic carbon-containing and nitrogen-containing compounds. The influence of the chloride ion in the degradation process of the different synthetic samples was also assessed. The results showed that the anodic oxidation process can efficiently degrade recalcitrant compounds such as humic acid. The presence of carbonate in solution enhances the nitrogen removal, whereas it hinders the oxidation of the organic compounds. When organic nitrogen is present, it is converted to NH 4 +, which in turn is oxidized to nitrate and to volatile nitrogen compounds. Hydroxyl radicals are more prone to oxidize the organic nitrogen than the ammonium nitrogen. The presence of chloride enhances the organic matter and nitrogen removal rates, BDD being the anode material that yields the highest removals. 相似文献
15.
Estimates of forest soil organic carbon (SOC) have applications in carbon science, soil quality studies, carbon sequestration technologies, and carbon trading. Forest SOC has been modeled using a regression coefficient methodology that applies mean SOC densities (mass/area) to broad forest regions. A higher resolution model is based on an approach that employs a geographic information system (GIS) with soil databases and satellite-derived landcover images. Despite this advancement, the regression approach remains the basis of current state and federal level greenhouse gas inventories. Both approaches are analyzed in detail for Wisconsin forest soils from 1983 to 2001, applying rigorous error-fixing algorithms to soil databases. Resulting SOC stock estimates are 20% larger when determined using the GIS method rather than the regression approach. Average annual rates of increase in SOC stocks are 3.6 and 1.0 million metric tons of carbon per year for the GIS and regression approaches respectively. 相似文献
17.
Earlier studies had shown significant differences in sorption of nine pesticides in soils collected from two landuses (native vegetation and market gardens), which could not be explained on the basis of organic carbon content alone. Consequently it was hypothesised that the differences in sorption behaviour between the two landuses may be due to variation in the chemistry of the organic carbon. In this study the relationship between sorption behaviour of the nine chemicals and soil organic carbon chemistry, as determined by solid-state (13)C NMR spectroscopy, was investigated. No significant differences were found between the two landuses in the distribution of the four main spectral regions of the (13)C NMR spectra of soil OC, except for the carbonyl fraction (165-220ppm), which may reflect the low OC content of the soils from both landuses. For all chemicals, except prometryne, the most significant (P<0.01 or P<0.001) relationship between K(d) values and types of OC was found with the aromatic (110-165ppm) or the alkyl (0-45ppm) fraction. A comparison was made of the variability of K(d) values normalized over OC (i.e. K(oc)), alkyl, aromatic and alkyl+aromatic fractions. Expressing K(d) values for all chemicals, except azinphos methyl, in soils under native vegetation as K(alkyl) or K(aromatic) greatly decreased the variability compared with the K(oc) value. However in the cultivated soils only the sorption coefficients for DEA, DIA and fenamiphos showed a decrease in variability when expressed as K(alkyl) or K(aromatic). This reflected the stronger relationship between sorption coefficients and the alkyl and aromatic fraction of soil OC in soils from native vegetation compared with those determined from the market garden soils. The different relationships between sorption coefficients and types of OC of the two landuses also suggests that the type of aromatic and alkyl carbon under the two landuses is different and NMR characterisation of the OC was not sufficient to distinguish these differences. 相似文献
18.
To evaluate the changes in sulphur pools in response to acidic deposition, two studies were made-one in southwest Sweden where podzolic B horizons originally sampled in 1951 were resampled in 1989. At the Norrliden site, northern Sweden, sulphur pools in control plots were compared to plots that had been subjected to H(2)SO(4) application between 1971 and 1976. The results show that in southwest Sweden neither organic S nor extractable SO(4)(2-) increased significantly over the 38-year period, despite a decreasing pH and a high S deposition. At Norrliden, about 37% of the applied S was still remaining in the upper and central parts of the Bs horizon, most of which was inorganic sulphate. These contrasting results are explained by intrinsic differences in the soil organic carbon status between the sites-in southwest Sweden, organic carbon concentrations were high which inhibited SO(4)(2-) adsorption. Low organic carbon concentrations and high extractable Fe/Al concentrations promoted SO(4)(2-) adsorption and caused a low subsequent SO(4)(2-) desorption rate at the Norrliden site. The results suggest that sulphate adsorption may be an important mechanism which delays the response in soil chemistry to H(2)SO(4) deposition, provided that soil organic carbon concentrations are low. Organic S retention was not shown to be an important S retention mechanism in any of the sites studied. 相似文献
19.
We evaluated foliar and forest floor chemistry across a gradient of N deposition in the Northeast at 11 red spruce (Picea rubens Sarg.) sites in 1987/1988 and foliar and forest floor chemistry and basal area growth at six paired spruce and deciduous sites in 1999. The six red spruce plots were a subset of the original 1987/1988 spruce sites. In 1999, we observed a significant correlation between mean growing season temperature and red spruce basal area growth. Red spruce and deciduous foliar %N correlated significantly with N deposition. Although N deposition has not changed significantly from 1987/1988 to 1999, net nitrification potential decreased significantly at Whiteface. This decrease in net potential nitrification is not consistent with the N saturation hypothesis and suggests that non-N deposition controls, such as climatic factors and immobilization of down dead wood, might have limited N cycling. 相似文献
20.
Aerobic decomposition and stabilization of organic matter during the composting of waste materials is primarily due to the biochemical transformation of water-soluble compounds in the liquid phase by the microbial biomass. For this reason water-soluble organic matter represents the most active fraction of compost, both biologically and chemically, and thus should directly reflect the biochemical alteration of organic matter. This work aims to elucidate the microbial-mediated processes responsible for the distribution of soluble organic matter between stable and labile pools with composting time. Accordingly, chemical analysis as well as UV absorption, and 1H and 13C-NMR spectroscopy of samples collected during the industrial composting of urban waste revealed microbial induced transformation of water-extractable organic matter over time. The chemical composition changed from labile, hydrophilic, plant-derived organic compounds in the beginning to predominately stable, hydrophobic moieties comprising lignin-derived phenols and microbially-derived carbohydrates at later stages of composting. 相似文献
|