首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Social Hymenoptera are general models for the study of parent-offspring conflict over sex ratio, because queens and workers frequently have different reproductive optima. The ant Pheidole pallidula shows a split distribution of sex ratios with most of the colonies producing reproductives of a single sex. Sex ratio specialization is tightly associated with the breeding system, with single-queen (monogynous) colonies producing male-biased brood and multiple-queen (polygynous) colonies female-biased brood. Here, we show that this sex specialization is primarily determined by the queens influence over colony sex ratio. Queens from monogynous colonies produce a significantly more male-biased primary sex ratio than queens from polygynous colonies. Moreover, queens from monogynous colonies produce a significantly lower proportion of diploid eggs that develop into queens and this is associated with lower rate of juvenile hormone (JH) production compared to queens from polygynous colonies. These results indicate that queens regulate colony sex ratio in two complementary ways: by determining the proportion of female eggs laid and by hormonally biasing the development of female eggs into either a worker or reproductive form. This is the first time that such a dual system of queen influence over colony sex ratio is identified in an ant.  相似文献   

2.
Summary The genetic population structure and the sociogenetic organization of the red wood ant Formica truncorum were compared in two populations with monogynous colonies and two populations with polygynous colonies. The genetic population structure was analysed by measuring allele frequency differences among local subsets of the main study populations. The analysis of sociogenetic organisation included estimates of nestmate queen and nestmate worker relatedness, effective number of queens, effective number of matings per queen, relatedness among male mates of nestmate queens and relatedness between queens and their male mates. The monogynous populations showed no differentiation between subpopulations, whereas there were significant allele frequency differences among the subpopulations in the polygynous population. Workers, queens and males showed the same genetical population structure. The relatedness among nestmate workers and among nestmate queens was identical in the polygynous societies. In three of the four populations there was a significant heterozygote excess among queens. The queens were related to their male mates in the polygynous population analysed, but not in the monogynous ones. The data suggest limited dispersal and partial intranidal mating in the populations with polygynous colonies and outbreeding in the populations having monogynous colonies. Polyandry was common in both population types; about 50% of the females had mated at least twice. The males contributed unequally to the progeny, one male fathering on average 75% of the offspring with double mating and 45–80% with three or more matings. Correspondence to: L. Sundström  相似文献   

3.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

4.
Summary We investigated the process of sexual maturation in winged queens of the fire ant Solenopsis invicta, a species with two distinct forms of social organization. We found that queens of the monogynous social form (single reproductive queen per colony) differ little or not at all from queens of the polygynous form (multiple reproductive queens per colony) in weight and fat content when these are pupae or newly-eclosed adults. Furthermore, the size of a sclerotized region of the adult thorax, which is set during larval growth, does not differ between queens of the two forms. In contrast, winged queens of the two social forms differ dramatically in their physiological phenotypes once they have matured, with monogynous queens weighing more and having greater fat reserves than polygynous queens. A crossfostering experiment revealed that the different maturation processes of queens of the two forms are induced largely by the type of colony in which a queen matures (monogynous or polygynous) rather than being due to intrinsic genetic differences between the forms. However, genetic variation at a single locus does appear to play some role in determining physiological phenotype in queens of the polygynous form, providing an example of genotype-environment interaction in the expression of these physiological traits. Differences between the social forms in the mature phenotypes that are produced constrain the reproductive options of queens, so that the characteristic social organization of a colony is perpetuated by virtue of the social environment in which new queens are reared. Correspondence to: L. Keller  相似文献   

5.
Sex ratios were bimodally distributed in a population of the monogynous and monandrous ant Leptothorax nylanderi during each of 3 study years. The population-wide investment ratios suggested worker control of sex allocation. Nest-level variation in the proportional investment in virgin queens was not affected by the presence or absence of a queen and only slightly by collecting year, but was correlated with nest size, total sexual investment and, unexpectedly, with differences in nestmate relatedness: small, low-investment nests and nests with several worker lineages produced male-biased sex ratios. Colonies containing several worker lineages arise from usurpation of mature colonies by unrelated founding queens and the fusion of unrelated colonies under strong nest site limitation. In contrast to facultatively polygynous and polyandrous species of social insects, where workers can maximize their inclusive fitness by adjusting sex ratios according to the degree of relatedness asymmetry, workers in mixed colonies of L. nylanderi do not benefit from manipulating sex allocation, as here relatedness asymmetries appear to be the same as in homogeneous colonies. Received: 7 December 1999 / Received in revised form: 29 February 2000 / Accepted: 13 March 2000  相似文献   

6.
Gnamptogenys striatula is a polygynous ant species, in which all workers are potentially able to mate. The reproductive status, relatedness and pedigree relationships among nestmate queens and winged females in a Brazilian population were investigated. We collected all the sexual females of 12 colonies (2–44 queens per colony, plus 2–18 winged females in 3 colonies). Dissections revealed that 98% of the queens were inseminated and that the queens in the most polygynous colonies did not lay equal numbers of eggs. The sexual females and a sample of the population were genotyped using eight microsatellite markers. Relatedness among nestmate queens was among the highest recorded to date (0.65±0.25), and tests of pedigree relationship showed that they were likely to be full-sisters, and sometimes cousins. Mated winged females were always full-sisters, the estimated genetically effective queen numbers were low and tests of pedigree relationship showed that only a few queens in the colony could be the mothers. These results suggest that the high queen-queen relatedness in polygynous colonies of G. striatula is maintained by an unusual mechanism: winged females are mostly produced by only one or a few queens, and these groups of full-sisters are recruited back into their original nest after mating. Received: 26 November 1999 / Revised: 7 September 2000 / Accepted: 7 September 2000  相似文献   

7.
Kin conflict over caste determination in social Hymenoptera   总被引:2,自引:0,他引:2  
We argue that caste determination, the process whereby females in the social Hymenoptera develop into either queens or workers, is subject to kin-selected conflict. Potential conflict arises because developing females are more closely related to their would-be offspring than to those of other females. Therefore, they may favour becoming queens contrary to the interests of other developing females and of existing queens and workers. We suggest two contexts leading to potential caste conflict. The first occurs when queens are reared in a reproductive phase following an ergonomic phase of worker production, while the second occurs when queens and workers are reared simultaneously. The first context assumes that workers' per capita contribution to colony survival and productivity falls with rising colony size. A critical feature influencing whether potential conflict is realized is the extent to which developing females can determine their own caste (“self-determination”). Self-determination is facilitated when female larvae control their own food intake and when queen-worker size dimorphism is low. We know of no strong evidence for actual conflict over caste fate arising in the first context. However, stingless bees and polygynous ants with excess queen-potential larvae that are either forced to develop as workers or are culled as adults demonstrate actual caste conflict in the second context. Caste conflict does not preclude caste regulation for “the good of the colony”, but such regulation is contingent on either the absence of potential conflict or on developing females losing control of their caste fate. Received: 22 March 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

8.
Summary ecological aspects of monogyny and polygyny in social insect colonies are important in comparing individual queen reproductive success. Inseminated, fecund, multiple foundresses are common in some groups of ants and eusocial wasps, but true polygyny in termites has not previously been studied. One third of Nasutitermes corniger (Isoptera: Termitidae) colonies sampled in areas of young second growth in Panama contained from 2–33 primary queens (not supplementary or neotenic reproductives). All queens in polygynous associations were fully pigmented, physogastric egg layers within a single royal cell. Multiple kings were found less frequently; true polyandry is apparently restricted to immature polygynous colonies.Data on queen weight and morphological features, and on colony composition, show that queens in polygynous nests are young and that a transition from polygyny to monogyny probably occurs after several years. The escalated growth rate of multiple queen colonies removes them from the vulnerable incipient colony size class more rapidly than colonies initiated by a single foundress, and gives them sufficient neuter support staff (workers and soldiers) to enable earlier production of fertile alates. Using a population model (Leslie matrix) I construct isoclines of equal population growth which show values of early age class probability of survival and reproductive output favoring monogyny or polygyny under individual selection. This model of queen mutualism accounts for the risk of a female in a polygynous group not succeeding as the final surviving queen.Multiple primary queens are considered rare in termites, but a review of the literature demonstrates that they may be more widespread than is currently recognized. Polygyny in termites has received scant attention but is of significance as an example of a further ecological and evolutionary convergence between the phylogenetically independent orders Isoptera and Hymenoptera.  相似文献   

9.
Knowledge of the sociogenetic organization determining the kin structure of social insect colonies is the basis for understanding the evolution of insect sociality. Kin structure is determined by the number and relatedness of queens and males reproducing in the colonies, and partitioning of reproduction among them. This study shows extreme flexibility in these traits in the facultatively polygynous red ant Myrmica rubra. Relatedness among worker nestmates varied from 0 to 0.82. The most important reason for this variation was the extensive variation in the queen number among populations. Most populations were moderately or highly polygynous resulting in low relatedness among worker nestmates, but effectively monogynous populations were also found. Polygynous populations also often tend to be polydomous, which is another reason for low relatedness. Coexisting queens were positively related in two populations out of five and relatedness was usually similar among workers in the same colonies. Due to the polydomous colony organization and short life span of queens, it was not possible to conclusively determine the importance of unequal reproduction among coexisting queens, but it did not seem to be important in determining the relatedness among worker nestmates. The estimates of the mating frequency by queens remained ambiguous, which may be due to variation among populations. In some populations relatedness among worker nestmates was high, suggesting monogyny and single mating by queens, but in single-queen laboratory nests relatedness among the worker offspring was lower, suggesting that multiple mating was common. The data on males were sparse, but indicated sperm precedence and no relatedness among males breeding in the same colony. A comparison of social organizations and habitat requirements of M. rubra and closely related M. ruginodis suggested that habitat longevity and patchiness may be important ecological factors promoting polygyny in Myrmica. Received: 15 May 1995/Accepted after revision: 17 October 1995  相似文献   

10.
Clark RM  Anderson KE  Gadau J  Fewell JH 《Ecology》2006,87(9):2201-2206
The fate of a social insect colony is partially determined by its ability to allocate individuals to the caste most appropriate for the requirements for growth, maintenance, and reproduction. In pairs of dependent lineages of Pogonomyrmex barbatus, the allocation of individuals to the queen or worker caste is constrained by genotype, a system known as genetic caste determination (GCD). In mature GCD colonies, interlineage female eggs develop into sterile workers, while intralineage eggs become reproductively capable queens. Although the population-level consequences of this system have been intensively studied, the proximate mechanisms for GCD remain unknown. To elucidate these mechanisms, we brought newly mated queens into the laboratory and allowed them to establish colonies, nearly half of which unexpectedly produced virgin queens only seven months after colony founding. We genotyped eggs, workers, and the virgin queens from these colonies. Our results showed that queens in young colonies produce both interlineage and intralineage eggs, demonstrating that queens of GCD colonies indiscriminately use sperm of at least two lineages to fertilize their eggs. Intralineage eggs were more frequent in colonies producing virgin queens. These findings suggest that intralineage eggs are predetermined to become queens and that workers may cull these eggs when colonies are not producing queens. Virgin queens produced by young GCD colonies were smaller than field-caught virgin queens, and often had developmental problems. Hence, they are probably nonfunctional and represent an intense resource drain for developing colonies, not a contribution to colony fitness.  相似文献   

11.
We document the variation in number of queens occurring naturally in founding, immature and mature nests of the ant Formica podzolica, and compare development of colonies and survivorship of queens in experimental nests started with 1–16 foundresses. Number of queens per nest was associated with stage of colony development. Most nests were monogynous, but 20% of immature nests (n = 66) and 25% of mature nests (n = 92) were oligogynous or polygynous. Colonies were usually established by single queens (i.e., haplometrosis), but colony establishment by multiple queens (i.e., pleometrotis) was also common, occurring in 27% of founding nests (n = 492). Foundress groups in the field were small ( = 1.47 ± 0.04 queens/nest), and large groups experienced high mortality and low productivity in artificial nests. Therefore, the many queens (up to 140) in some immature and mature colonies were probably secondarily pleometrotic. Experimental nests started with 1–4 queens were more successful than those initiated by 8 or 16 queens. Small groups (2–4 queens) produced more pupae before the first nests reared workers than single foundresses or larger groups (8 or 16 queens). Although single foundresses were less productive than queens in small groups, they experienced greater survivorship and less weight loss than queens in pleometrotic associations. Besides low productivity, queen mortality and weight loss were greatest in large groups.  相似文献   

12.
Colonies of social insects are sometimes viewed as superorganisms. The birth, reproduction, and death of colonies can be studied with demographic measures analogous to those normally applied to individuals, but two additional questions arise. First, how do adaptive colony demographies arise from individual behaviors? Second, since these superorganisms are made up of genetically distinct individuals, do conflicts within the colony sometimes modify and upset optima for colonies? The interplay between individual and superindividual or colony interests appears to be particularly complex in neotropical, swarm-founding, epiponine wasps such as Parachartergus colobopterus. In a long-term study of this species, we censused 286 nests to study colony-level reproduction and survivorship and evaluated individual-level factors by assessing genetic relatedness and queen production. Colony survivorship followed a negative exponential curve very closely, indicating type II survivorship. This pattern is defined by constant mortality across ages and is more characteristic of birds and other vertebrates than of insects. Individual colonies are long-lived, lasting an average of 347 days, with a maximum of over 4.5 years. The low and constant levels of colony mortality arise in part from colony initiation by swarming, nesting on protected substrates, and an unusual expandable nest structure. The ability to requeen rapidly was also important; relatedness data suggest that colonies requeen on average once every 9–12 months. We studied whether colony optima with respect to the timing of reproduction could be upset by individual worker interests. In this species, colonies are normally polygynous but new queens are produced only after a colony reaches the monogynous state, a result which is in accord with the genetic interests of workers. Therefore colony worker interests might drive colonies to reproduce whenever queen number happens to cycled down to one rather than at the season that is otherwise optimal. However, we found reproduction to be heavily concentrated in the rainy season. The number of new colonies peaked in this season as did the percentages of males and queens. Relatedness among workers reached a seasonal low of 0.21–0.27, reflecting the higher numbers of laying queens. This seasonality was achieved in part by a modest degree of synchrony in the queen reduction cycle. Worker relatedness reached peaks of around 0.4 in the dry season, reflecting a decrease to a harmonic mean queen number of about 2.5. Thus, a significant number of colonies must be approaching monogyny entering the rainy season. Coupled with polygynous colonies rearing only males (split sex ratios), this makes it possible for a colony cycle driven by selfish worker interests to be consistent with concentrating colony reproduction during a favorable season.  相似文献   

13.
We report the results of a comprehensive investigation of the queen size dimorphism in the North American ant Leptothorax rugatulus. Employing allozymes and microsatellites as genetic markers, we found no evidence that the gene pools of large (macrogynes) and small (microgynes) queens are distinct. Queens in polygynous colonies are related to each other, supporting the hypothesis that colonies with more than one queen commonly arise by the adoption of daughter queens into their natal colonies. The higher fat content of macrogynes, their predominance in monogynous societies and in small founding colonies, and their greater flight activity favor the view that macrogynes predominantly found colonies independently, while microgynes are specialized for dependent colony founding by readoption. When comparing the genetic structure of three different subpopulations, we found that the alternative life histories had no significant effect on population viscosity at the scale investigated.  相似文献   

14.
Loss of aggression between social groups can have far-reaching effects on the structure of societies and populations. We tested whether variation in the genetic structure of colonies of the termite Nasutitermes corniger affects the probability of aggression toward non-nestmates and the ability of unrelated colonies to fuse. We determined the genotypes of workers and soldiers from 120 colonies at seven polymorphic microsatellite loci. Twenty-seven colonies contained offspring of multiple founding queens or kings, yielding an average within-colony relatedness of 0.33. Genotypes in the remaining 93 colonies were consistent with reproduction by a single queen and king or their progeny, with an average within-colony relatedness of 0.51. In standardized assays, the probability of aggression between workers and soldiers from different colonies was an increasing function of within-colony relatedness. The probability of aggression was not affected significantly by the degree of relatedness between colonies, which was near zero in all cases, or by whether the colonies were neighbors. To test whether these assays of aggression predict the potential for colony fusion in the field, we transplanted selected nests to new locations. Workers and soldiers from colonies that were mutually tolerant in laboratory assays joined their nests without fighting, but workers and soldiers that were mutually aggressive in the assays initiated massive battles. These results suggest that the presence of multiple unrelated queens or kings promotes recognition errors, which can lead to the formation of more complex colony structures.  相似文献   

15.
In many polygynous ant species, established colonies adopt new queens secondarily. Conflicts over queen adoption might arise between queens and workers of established colonies and the newly mated females seeking adoption into nests. Colony members are predicted to base adoption decisions on their relatednesses to other participants, on competition between queens for colony resources, and on the effects that adopted queens have on colony survivorship and productivity. To provide a better understanding of queen-adoption dynamics in a facultatively polygynous ant, colonies of Myrmica tahoensis were observed in the field for 4 consecutive years and analyzed genetically using highly polymorphic microsatellite DNA markers. The extreme rarity of newly founded colonies suggests that most newly mated queens that succeed do so by entering established nests. Queens are closely related on average (rˉ = 0.58), although a sizable minority of queen pairs (29%) are not close relatives. An experiment involving transfers of queens among nests showed that queens are often accepted by workers to which they are completely unrelated. Average queen numbers estimated from nest excavations (harmonic mean = 1.4) are broadly similar to effective queen numbers inferred from the genetic relatedness of colony members, suggesting that reproductive skew is low in this species. Queens appear to have reproductive lifespans of only 1 or 2 years. As a result, queens transmit a substantial fraction of their genes posthumously (through the reproduction of related nestmates), in comparison to direct and indirect reproduction while they are alive. Thus queens and other colony members should often accept new queens when doing so will increase colony survivorship, in some cases even when the adopted queens are not close relatives. Received: 20 February 1996/Accepted after revision: 25 May 1996  相似文献   

16.
Adaptive brain architecture hypotheses predict brain region investment matches the cognitive and sensory demands an individual confronts. Social hymenopteran queen and worker castes differ categorically in behavior and physiology leading to divergent sensory experiences. Queens in mature colonies are largely nest-bound while workers depart nests to forage. We predicted social paperwasp castes would differ in tissue allocation among brain regions. We expected workers to invest relatively more than queens in neural tissues that process visual input. As predicted, we found workers invested more in visual relative to antennal processing than queens both in peripheral sensory lobes and in central processing brain regions (mushroom bodies). Although we did not measure individual brain development changes, our comparative data provide a preliminary test of mechanisms of caste differences. Paperwasp species differ in the degree of caste differentiation (monomorphic versus polymorphic castes) and in colony structure (independent- versus swarm-founding); these differences could correspond to the magnitude of caste brain divergence. If caste differences resulted from divergent developmental programs (experience-expectant brain growth), we predicted species with morphologically distinct queens, and/or swarm-founders, would show greater caste divergence of brain architecture. Alternatively, if adult experience affected brain plasticity (experience-dependent brain growth), we predicted independent-founding species would show greater caste divergence of brain architecture. Caste polymorphism was not related to the magnitude of queen-worker brain differences, and independent-founder caste brain differences were greater than swarm-founder caste differences. Greater caste separation in independent-founder brain structure suggests a role for adult experience in the development of caste-specific brain anatomy.  相似文献   

17.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

18.
Summary Inbreeding may have important consequences for the genetic structure of social insects and thus for sex ratios and the evolution of sociality and multiple queen (polygynous) colonies. The influence of kinship on mating preferences was investigated in a polygynous ant species, Iridomyrmex humilis, which has within-nest mating. When females were presented simultaneously with a brother that had been reared in the same colony until the pupal stage and an unrelated male produced in another colony, females mated preferentially with the unrelated male. The role of environmental colony-derived cues was tested in a second experiment where females were presented with two unrelated males, one of which had been reared in the same colony until the pupal stage (i.e., as in the previous experiment), while the other had been produced in another colony. In this experiment there was no preferential mating with familiar or unfamiliar males, suggesting that colony-derived cues might not be important in mating preferences. Inbreeding was shown to have no strong effect on the reproductive output of queens as measured by the number of worker and sexual pupae produced. The level of fluctuating asymmetry of workers produced by inbreeding queens was not significantly higher than that of non-inbreeding queens. Finally, colonies headed by inbreeding queens did not produce adult diploid males. Based on the current hypotheses of sex-determination the most plausible explanations for the absence of diploid-male-producing colonies are that (i) workers recognized and eliminated these males early in their development, and/or (ii) there are multiple sex-determining loci in this species. It is suggested that even if inbreeding effects on colony productivity are absent or low, incest avoidance mechanisms may have evolved and been maintained if inbreeding queens produce a higher proportion of unviable offspring. Correspondence to: L. Keller at the present address  相似文献   

19.
In populations of various ant species, many queens reproduce in the same nest (polygyny), and colony boundaries appear to be absent with individuals able to move freely between nests (unicoloniality). Such societies depart strongly from a simple family structure and pose a potential challenge to kin selection theory, because high queen number coupled with unrestricted gene flow among nests should result in levels of relatedness among nestmates close to zero. This study investigated the breeding system and genetic structure of a highly polygynous and largely unicolonial population of the wood ant Formica paralugubris. A microsatellite analysis revealed that nestmate workers, reproductive queens and reproductive males (the queens' mates) are all equally related to each other, with relatedness estimates centring around 0.14. This suggests that most of the queens and males reproducing in the study population had mated within or close to their natal nest, and that the queens did not disperse far after mating. We developed a theoretical model to investigate how the breeding system affects the relatedness structure of polygynous colonies. By combining the model and our empirical data, it was estimated that about 99.8% of the reproducing queens and males originated from within the nest, or from a nearby nest. This high rate of local mating and the rarity of long-distance dispersal maintain significant relatedness among nestmates, and contrast with the common view that unicoloniality is coupled with unrestricted gene flow among nests. Received: 8 February 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

20.
Summary There is high within-nest relatedness for functional queens (with corpora lutea), nonfunctional queens (without corpora lutea), and workers in polygynous nests of Leptothorax acervorum. The high functional queen relatedness suggests that young mated queens are adopted back to their mother nest. Functional queen relatedness does not change with the number of queens present in the nest, suggesting that the number of generations of queens, on average two to three, is rather stable. Worker relatedness decreases with increasing number of functional queens per nest (Tables 5, 6). The number of queens contributing offspring to the nest (mothers), estimated from worker and functional queen relatedness, is lower than the number of functional queens, particularly in highly polygynous nests. Estimates of number of mothers in monogynous nests indicate that these nests previously were polygynous (Table 7). There is no correlation between nest relatedness and distance between nests, and budding-off, if present, thus appears to be a rare mode of nest founding (Table 8). There are no indications of inbreeding in the two populations studied since the frequency of heterozygotes is as high as expected from random mating (Table 4). Most likely, polygyny is the rule in L. acervorum and serves to secure the presence of queens in the nest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号