首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
根据抚顺市"十一五"期间环境空气质量监测资料,系统地分析了"十一五"期间抚顺市的环境空气质量状况及污染原因。结果表明,"十一五"期间抚顺市的环境空气质量总体上有所改善,环境空气中的二氧化硫、二氧化氮各年均达标,可吸入颗粒物从2008年开始连续三年达标。采暖期的空气污染明显重于非采暖期,工业区的污染重于其它区。抚顺市的环境空气污染主要受城市布局和产业结构、气象条件及汽车尾气的影响。  相似文献   

2.
根据大连市大气污染特点,通过对SO2、NO2、PM10年均值、月均值以及各功能区年均值和采暖期与非采暖期的污染状况进行玢析。得出大连市大气环境中SO2、NO2、PM10的主要来源及污染程度。结果表明,3项污染指标的年均值均符合国家环境空气质量二级标准:SO2呈缓慢增长趋势,NO2、PM10无明显变化趋势。  相似文献   

3.
从榆林市2007—2012年环境空气中SO2、NO2和PM10的变化趋势可以看出,SO2和PM10浓度总体有下降趋势,2012年较2007年水平降低了约25%,而NO2浓度总体呈上升趋势,2012年较2007年水平增加了约80%;在月际变化中,NO2和PM10采暖期浓度增幅约在30%以上,而SO2采暖期浓度甚至达到非采暖期的4倍,可见,采暖期燃煤锅炉污染控制仍是降低大气污染物浓度的关键,而加强脱硝工程的实施也是当前较为迫切的任务。  相似文献   

4.
通过分析2004年度到2010年度采暖期的PM10、SO2、NO2的日平均质量浓度值,发现呼和浩特市采暖期期间空气质量污染状况逐年呈下降趋势;12月中下旬到1月底之间,SO2、PM10浓度较大,这是由于在该时段冬季温度较低供暖燃煤量增加所造成的。而此外PM10的大浓度值也出现在3月份,是和春季沙尘天气有密切联系的。  相似文献   

5.
北京城区2007~2012年细颗粒物数浓度时空演化   总被引:3,自引:0,他引:3       下载免费PDF全文
为反映近年来北京城区细颗粒物数浓度时空演化过程,利用MODEL 3886GEO-α手持式激光粒子计数仪连续采集了2007~2012年北京城区93个采样点 6月上旬~7月上旬(非采暖期)和12月上旬~次年的1月上旬(采暖期)细粒径颗粒物PM (0.3、0.3~0.5、0.5~1.0) 的粒子数浓度数据,然后在地统计和空间分析方法的基础上,探究了北京城区细颗粒物数浓度的时空演化特征.结果表明,PM0.3在采暖期的数值均高于其在非采暖期的浓度值,而PM0.3~0.5和PM0.5~1.0在两个不同的采样期浓度值有高有低;采暖期不同下垫面细颗粒浓度差异较明显,而非采暖期下垫面类型对细颗粒浓度的影响相对较弱;非采暖期,北京城区南部的丰台区和东部的朝阳区细颗粒物污染最严重,市中心次之,而北部的海淀区和西部的石景山区污染相对较轻;采暖期,北京城区细颗粒物污染主要集中在朝阳区的东部和东南部,以及市中心及其周边区域.  相似文献   

6.
通过对太原市2013年冬季和2014年夏季PM10、PM2.5、SO2和CO 24小时平均浓度实时数据的整理和分析,结果表明,冬季污染较夏季严重。冬季为采暖期,颗粒物、SO2和CO相互之间呈现较强的相关关系,污染物来源有着较高的同源性,区域采暖燃煤是区域大气污染的主导性影响因素;夏季为非采暖期,颗粒物、SO2和CO相互之间呈现较弱的相关关系,其污染来源有着较低的同源性,燃煤污染不是区域的主要污染因素,颗粒物、SO2和CO来源于不同行业的工业污染,同时城市机动车尾气也是PM2.5和CO的污染影响因素。  相似文献   

7.
通过对太原市2013年冬季和2014年夏季PM10、PM2.5、SO2和CO 24小时平均浓度实时数据的整理和分析,结果表明,冬季污染较夏季严重。冬季为采暖期,颗粒物、SO2和CO相互之间呈现较强的相关关系,污染物来源有着较高的同源性,区域采暖燃煤是区域大气污染的主导性影响因素;夏季为非采暖期,颗粒物、SO2和CO相互之间呈现较弱的相关关系,其污染来源有着较低的同源性,燃煤污染不是区域的主要污染因素,颗粒物、SO2和CO来源于不同行业的工业污染,同时城市机动车尾气也是PM2.5和CO的污染影响因素。  相似文献   

8.
为了研究沈阳市采暖期与非采暖期空气PM2.5污染特征及来源,于2015年1月29日~2016年1月26日在沈阳市采集PM2.5有效样品113组,并分析了其载带的水溶性离子、碳组分及元素组分。结果表明,采样期间沈阳市PM2.5质量浓度均值为66μg·m-3,其中31.0%的样品超过《环境空气质量标准》(GB3095-2012)日均值二级标准(75μg·m-3),采暖期PM2.5的平均浓度和超标率(90μg·m-3、68.6%)明显高于非采暖期(51μg·m-3、31.4%)。采样期间21种元素(除了Mg、Ti、Ca、Fe、Si)、水溶性离子(除Ca2+以外)和OC、EC质量浓度均呈现出采暖期高于非采暖期的趋势;[NO3-]/[SO42-]比值表明非采暖期受移动源影响明显增加,燃煤等固定源仍是采暖期PM2.5的主要来源,PM2.5中水溶性离子是固定源和移动源共同作用的结果;氮氧化率(NOR)和硫氧化率(SOR)分析得到NOx二次转化程度较弱,SO2二次转化程度较强,特别是在非采暖期;富集因子结果表明EF值较高的元素主要来自燃煤、交通污染和工业排放。PM2.5组分重构质量与实测质量呈现较好的相关性,采暖期和非采暖期PM2.5中主要组分均为有机物(OM)(28.0%、23.1%)、矿物尘(MIN)(14.5%、26.0%)和SO42-(15.1%、19.9%),PM2.5受二次粒子、燃烧源和扬尘源影响较大。  相似文献   

9.
本文收集西安市2013年环境监测站发布的空气质量指数(AQI)及环境空气状况与监测月报资料,对空气质量等级、AQI变化情况、主要污染物浓度变化趋势及采暖期和非采暖期浓度比较进行分析.研究结果表明:西安市2013空气质量二级以上的达标率为37.8%,年均AQI值为151,SO2、NO2、PM10和PM2.5的月监测浓度变化趋势无显著意义,采暖期平均浓度均显著高于非采暖期平均浓度,PM2.5采暖期均值是非采暖期均值的3.09倍.由此可见控制SO2、NO2、PM10和PM2.5的排放是改善西安市空气质量的重点工作.  相似文献   

10.
邯郸市大气复合污染特征的监测研究   总被引:8,自引:2,他引:6  
利用邯郸市4个大气环境监测站点的PM2.5、PM10、O3等在线连续观测数据,对2013年全年的PM2.5、PM10、O3的浓度水平、变化规律和PM2.5/PM10的变化情况进行了分析,并从地形、气象、污染物排放及冬、夏季逐时PM2.5、O3和各类气体污染物浓度之间的关系等方面进行了研究.结果表明:12013年PM2.5、PM10的年均浓度分别为139和238μg·m-3,分别是国家二级标准的4.0倍和3.4倍.PM2.5、PM10日均浓度超过标准的天数均在280 d左右,全年3/4以上天数均超标.其颗粒物污染程度甚至超过北京、天津、长三角和珠三角等超大城市或城市群,属于严重超载的红色预警地区.整个采暖期PM2.5、PM10平均浓度分别为209和322.1μg·m-3,为非采暖期平均浓度的2倍和1.6倍;同时,采暖期PM2.5/PM10平均值为63%,高出非采暖期10%,采暖期细颗粒物污染问题特征明显.22013年O3日最大8小时平均浓度的最大值为238μg·m-3,是国家二级标准的1.5倍,超标天数为53 d,超标率为14.5%;最大时均浓度为288μg·m-3,是国家二级标准的1.4倍,超标小时数为148h,占全年有效数据的1.7%;与北方城市相比,其污染程度超过北京、天津等,略低于洛阳污染水平.3邯郸市大气复合污染的形成,除了区域大气环流与特殊地形叠加影响外,还主要归因于相对较高的人为源大气污染物排放,因此,要想走出复合污染的困局,减排是硬道理,解决灰霾污染需开展颗粒物、NOx、SO2等污染物的协同控制.  相似文献   

11.
以空气中可吸入颗粒物(PM2.5和PM10)为研究对象,分析了采暖期和非采暖期不同监测点位PM10与PM2.5的相关性。结果表明,采暖期和非采暖期不同高度PM10与PM2.5的相关性均相当明显,可吸入颗粒物中PM2.5占绝大比重;采暖期不同高度PM10与PM2.5的相关系数大于非采暖期,季节变化规律明显。  相似文献   

12.
通过对乌鲁木齐市2013年至2014年非采暖期主要大气污染物的浓度变化进行比较,分析了乌鲁木齐市非采暖期PM10的浓度的变化特征,为非采暖期扬尘污染的治理提供了数据基础,并提出有效治理建议。  相似文献   

13.
根据2010年抚顺市环境统计数据,用等标污染负荷法,对抚顺市2010年的工业废水进行了评价,并得出了2010年抚顺市工业废水中的主要工业废水污染最重的地区是东洲区其次是顺城区和望花区,2010年抚顺市工业废水中的首要污染物是氨氮,其次是COD,氨氮和COD占全市的75.51%。  相似文献   

14.
根据榆林城区环境空气质量监测数据,对2001~2010年间榆林城区空气质量污染特征和主要空气污染物的变化规律进行了分析。结果表明:2001~2010年间,榆林市城区的SO2、NO2和颗粒物污染总体呈下降趋势;2007~2010年间,SO2和PM10的季节性污染特征较明显,SO2浓度高值主要集中在冬季采暖期,PM10浓度高值主要集中在春季沙尘常发期的3~6月,NO2浓度全年均无超标,季节性变化较稳定。  相似文献   

15.
选取2018年南通市崇川区6项常规大气污染物进行分析,研究污染物的时间分布特征、内在联系,对空气质量进行综合评价。基于因子分析法结果显示,PM10、PM2. 5、SO2、NO2、CO呈显著正相关,O3仅与CO在0. 05水平上呈显著相关。提取特征值分别为4. 149和1. 041两个公因子,累积方差贡献率包含86. 505%的信息,因子1可解释为初次污染物影响因子,因子2可解释为二次污染物影响因子,初次污染物影响在8月污染最轻,1月污染最重,二次污染物影响在12月污染最轻,4月污染最重,综合得分排名可以看出全年中6—10月空气质量较好,1月和4月的空气质量较差。  相似文献   

16.
太原市采暖期大气污染明显严重于非采暖期,为解决采暖期的大气污染问题,太原市制定了《太原市集中供热专项规划方案》。为了定量分析该规划实施后环境空气质量改善的效果,文章通过现场调查、资料调研和公式估算等方法,建立了太原市供热相关的现状污染源清单和供热改造后污染源清单,并以MM5模拟气象场和部分地面气象站观测数据为基础,利用适用于太原市复杂地形条件的CALPUFF大气扩散模型,对供热相关污染源在规划实施前后的污染贡献分别进行了模拟,分析了空气质量改善的效果。模拟显示,在供热相关污染源污染贡献相对较大的太原市区,SO2、NO2和PM10冬季采暖的污染贡献率可分别达到36.4%、35.3%和25.3%,规划实施后,各区域环境空气质量均明显好转。其中SO2下降幅度在8%~30.9%之间,NO2下降幅度在4.7%~22.1%之间,PM10下降幅度在2.3%~24.4%之间,最大下降幅度均出现在太原市区。  相似文献   

17.
本文通过在天津市滨海新区局部区域汉沽和大港采集TSP和PM10样品,研究了不同颗粒物中半挥发性有机物的不同期别污染和分布特征,结果表明:半挥发性的污染水平存在明显的季节性特征,采暖期半挥发性有机物和可吸入颗粒物中苯并[a]芘浓度均远远高于非采暖期.  相似文献   

18.
大气颗粒物是造成城市空气污染的重要原因之一,并已经成为我国北京等大中城市空气污染中的首要污染物.为分析北京市采暖期大气中可吸入颗粒物的污染水平及其气象因素的影响作用,以大气可吸入颗粒物PM0.3,PM3.0,PM5.0为研究对象,于2007~2009年采暖期间在北京市城区设立了93个采样点进行定点采样监测,利用地统计分析工具和指示克里格方法,模拟分析了北京市城区2007~2009年采暖期PM0.3、PM3.0、PM5.0的时空变异性,并建立起可吸入颗粒物浓度与气象条件(风力、温度、湿度)的对应关系,由此分析气象因素对大气颗粒物污染水平的影响程度.结果表明:实验半变异函数符合具有块金值的球状模型;北京城区空气可吸入颗粒物的污染水平自2007年以来污染程度与污染面积均呈减小趋势,影响范围主要集中在西南部,西北次之,近郊区污染重于城区;气象条件是影响可吸入颗粒物污染程度的重要因素,在不同年份不同气象因子对颗粒物的影响是不同的.但另一方面,由于污染原因季节冷暖程度的不同,气象条件对颗粒物浓度的影响有不确定的一面,但仍可找到一些规律.  相似文献   

19.
在滨海新区局部区域汉沽和大港采集了TSP和PM10样品,分析了不同颗粒物中多环芳烃的不同期别污染和分布特征,结果表明,多环芳烃的污染水平存在明显的季节性特征,采暖期多环芳烃和可吸入颗粒物中苯并[a]芘浓度均远远高于非采暖期。多环芳烃在不同期别也有不同的分布特征,非采暖期均是高环类多环芳烃占主导地位,比例超过60%;而在采暖期则是中环类多环芳烃占主导。  相似文献   

20.
本文以乌鲁木齐市65中教室为研究对象,对采暖期和非采暖期教学环境空气质量进行了监测和分析,鉴于新疆地区的气候特征、民族组成特征及学校教学环境现状,本文对影响教学环境舒适性的4项指标:二氧化碳(CO_2)、苯系物、总挥发性有机物(TVOC)和可吸入颗粒物(PM10)进行了监测,监测结果显示:在采暖期和非采暖期,TVOC均超过中小学教室卫生标准限制,其他指标均未超限,采暖期4项指标均高于非采暖期,采暖期CO_2、苯系物、TVOC和PM10四项指标监测平均值分别是899ppm、0.055mg/m~3、0.7 mg/m~3和0.1 mg/m~3。24h监测值显示除了苯系物浓度与教学时段和非教学时段没有明显的差异性,其他3项指标在教学时间明显升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号