首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The world’s plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry.  相似文献   

2.
The use of composites made from non-biodegradable conventional plastic materials (e.g., polypropylene, PP) is creating global environmental concern. Biodegradable plastics such as poly(butylene succinate) (PBS) are sought after to reduce plastic waste accumulation. Unfortunately, these types of plastics are very costly; therefore, natural lignocellulosic fibers are incorporated to reduce the cost. Kenaf fibers are also incorporated into PP and PBS for reinforcing purposes and they have low densities, high specific properties and renewable sourcing. However without good compatibilization, the interfacial adhesion between the matrix and the fibers is poor due to differences in polarity between the two materials. Maleic anhydride-grafted compatibilizers may be introduced into the system to improve the matrix-fiber interactions. The overall mechanical, thermal and water absorption properties of PP and PBS composites prepared with 30 vol.% short kenaf fibers (KFs) using a twin-screw extruder were being investigated in this study. The flexural properties for both types of composites were enhanced by the addition of compatibilizer, with improvements of 56 and 16 % in flexural strength for the PP/KF and PBS/KF composites, respectively. Good matrix-fiber adhesion was also observed by scanning electron microscopy. However, the thermal stability of the PBS/KF composites was lower than that of the PP/KF composites. This result was confirmed by both DSC and TGA thermal analysis tests. The water absorption at equilibrium of a PBS composite filled with KFs is inherently lower than of a PP/KF composite because the water molecules more readily penetrate the PP composites through existing voids between the fibers and the matrix. Based on this research, it can be concluded that PBS/KF composites are good candidates for replacing PP/KF composites in applications whereby biodegradability is essential and no extreme thermal and moisture exposures are required.  相似文献   

3.
A novel process has been developed for separation of the cellulose, i.e. cotton and viscose, from blended-fibers waste textiles. An environmentally friendly cellulose solvent, N-methylmorpholine-N-oxide (NMMO) was used in this process for separation and pretreatment of the cellulose. This solvent was mixed with blended-fibers textiles at 120 °C and atmospheric pressure to dissolve the cellulose and separate it from the undissolved non-cellulosic fibers. Water was then added to the solution in order to precipitate the cellulose, while both water and NMMO were reused after separation by evaporation. The cellulose was then either hydrolyzed by cellulase enzymes followed by fermentation to ethanol, or digested directly to produce biogas. The process was verified by testing 50/50 polyester/cotton and 40/60 polyester/viscose-blended textiles. The polyesters were purified as fibers after the NMMO treatments, and up to 95% of the cellulose fibers were regenerated and collected on a filter. A 2-day enzymatic hydrolysis and 1-day fermentation of the regenerated cotton and viscose resulted in 48 and 50 g ethanol/g regenerated cellulose, which were 85% and 89% of the theoretical yields, respectively. This process also resulted in a significant increase of the biogas production rate. While untreated cotton and viscose fibers were converted to methane by respectively, 0.02% and 1.91% of their theoretical yields in 3 days of digestion, the identical NMMO-treated fibers resulted into about 30% of yield at the same period of time.  相似文献   

4.
Ni-MH spent batteries: a raw material to produce Ni-Co alloys   总被引:5,自引:0,他引:5  
Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.  相似文献   

5.
The manufacturing industry produces a lot of different by-products and waste. In this research, the utilization of different industrial wastes as a part of wood-plastic composites was tested. Limestone waste and carton cutting waste were tested by replacing part of the reinforcing fibers of the composite with these materials. The materials were made with the extrusion process, and they were tested for their mechanical properties, water absorption and thickness swelling. The materials were also viewed with a scanning electron microscope. The results showed that both industrial wastes affected the properties of the composite. Mining waste in the composite improved the moisture properties, impact strength and hardness of the material. Carton cutting waste improved the impact strength remarkably.  相似文献   

6.
Composition and quantity per person of municipal solid waste (MSW) have been analyzed in six municipalities in southern Sweden with similar socio-economic conditions but with different collection systems. Samples of residual waste have been sorted, classified and weighed in 21 categories during 26 analyses that took place from 1998-2004. Collection data of the total waste flow, including source sorted recycling materials, in the same area have been compiled and compared. Multivariate data analyses have been applied. Weight-based billing reduced delivered amounts of residual household waste by 50%, but it is unknown to what extent improper material paths had developed. With curbside collection more metal, plastic and paper packaging was separated and left to recycling. When separate collection of biodegradables was included in the curbside system, the overall sorting of dry recyclables increased. The large uncertainty associated with waste composition analyses makes it difficult to draw strong conclusions regarding the effects on specific recyclables or the changes in the composition of the residual waste.  相似文献   

7.
Electrical separation of plastics coming from special waste   总被引:2,自引:0,他引:2  
Minimisation of waste to landfilling is recognised as a priority in waste management by European rules. In order to achieve this goal, developing suitable technologies for waste recycling is therefore of great importance. To achieve this aim the technologies utilised for mineral processing can be taken into consideration to develop recycling systems. In particular comminution and separation processes can be adopted to recover valuable materials from composite waste. In this work the possibility of recycling pharmaceutical blister packaging has been investigated. A suitable comminution process has been applied in order to obtain the liberation of the plastic and aluminium components. Experiments of electrical separation have been carried out in order to point out the influence of the process parameters on the selections of the different materials and to set up the optimum operating conditions.  相似文献   

8.
Events like trade fairs are a complex service activity with a considerable economic, social and environmental impact due, among other factors, to their high level of waste generation. There are few studies of the environmental impact associated with waste generation and typology. An environmental analysis methodology has been developed to characterise the waste associated with the temporary structures used at trade fair events: stands and communal spaces.This methodology has been checked in a pilot test at 6 closed trade fairs in Barcelona, with a range of between 60 and 4400 exhibitors. The methodology developed has made possible to obtain a waste generation profile according to the size of the fair and the types of stands. The stages with the largest amount of temporary structure wastes generated are the assembly and the dismantling of the trade fair.The results indicate that the most common wastes generated are the protective plastic from carpets at the assembly stage and the carpet itself at the dismantling stage. The stand carpet is collected in bulk, while the carpet from the communal spaces is recycled. As the size of the fair increases, and with it the proportion of stands with customised design (or non-reusable stands), the quantity of wood and hazardous waste increases.  相似文献   

9.
Stress-strain response of plastic waste mixed soil   总被引:1,自引:0,他引:1  
Recycling plastic waste from water bottles has become one of the major challenges worldwide. The present study provides an approach for the use plastic waste as reinforcement material in soil. The experimental results in the form of stress-strain-pore water pressure response are presented. Based on experimental test results, it is observed that the strength of soil is improved and compressibility reduced significantly with addition of a small percentage of plastic waste to the soil. The use of the improvement in strength and compressibility response due to inclusion of plastic waste can be advantageously used in bearing capacity improvement and settlement reduction in the design of shallow foundations.  相似文献   

10.
Improvement of mechanical properties of recycled mixed plastic waste is one of the fundamental goals in any recycling process. However, polymer immiscibility makes the development of any effective reprocessing method difficult. In this work, a polymer milling process with liquid CO2 was applied to polymeric mixed waste, obtaining a powder material which was successfully utilized as a matrix for a new composite material. Developed materials have interesting mechanical properties and material performance can easily be improved. Investigations on selected mixtures of PP and PE clearly showed evidence of chemical compatibilization.  相似文献   

11.
The aim of this research was to separate the different plastics of a mixed post-consumer plastic waste by the combination of a three-stage sink-float method and selective flotation. By using the three-stage sink-float method, six mixed-plastic wastes, belonging to the 0.3-0.5 cm size class and including high density polyethylene (HDPE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyethylene terephthalate (PET) and acrylonitrile-butadiene-styrene copolymers (ABS) were separated into two groups, i.e., a low density plastic group (HDPE and PP) and a high density plastic group (PET, PVC, PS and ABS) by tap water. Plastic whose density is less than that of the medium solution floats to the surface, while the one whose density is greater than that of the medium solution sinks to the bottom. The experimental results elucidated that complete separation of HDPE from PP was achieved by the three-stage sink-float method with 50% v/v ethyl alcohol. To succeed in the separation of a PS/ABS mixture from a PET/PVC mixture by the three-stage sink-float method, a 30% w/v calcium chloride solution was employed. To further separate post-consumer PET/PVC and PS/ABS based on plastic type, selective flotation was carried out. In order to succeed in selective flotation separation, it is necessary to render hydrophilic the surface of one or more species while the others are kept in a hydrophobic state. In flotation studies, the effects of wetting agent, frother, pH of solution and electrolyte on separation were determined. The selective flotation results showed that when using 500 mg l(-1) calcium lignosulfonate, 0.01 ppm MIBC, and 0.1 mg l(-1) CaCl2 at pH 11, PET could be separated from PVC. To separate ABS from PS, 200 mg l(-1) calcium lignosulfonate and 0.1 mg l(-1) CaCl2 at pH 7 were used as a flotation solution. Wettability of plastic increases when adding CaCl2 and corresponds to a decrease in its contact angles and to a reduction in the recovery of plastic in the floated product.  相似文献   

12.
The possibility of recycling waste medium density fiberboard (MDF) into wood-cement composites was evaluated. Both new fibers and recycled steam exploded MDF fibers had poor compatibility with cement if no treatment was applied, due to interference of the hydration process by the water soluble components of the fiber. However, this issue was resolved when a rapid hardening process with carbon dioxide injection was adopted. It appears that the rapid carbonation allowed the board to develop considerable strength before the adverse effects of the wood extractives could take effect. After 3-5 min of carbon dioxide injection, the composites reached 22-27% of total carbonation and developed 50-70% of their final (28-day) strength. Composites containing recycled MDF fibers had slightly lower splitting tensile strength and lower tensile toughness properties than those containing new fibers especially at a high fiber/cement ratio. Composites containing recycled MDF fibers also showed lower values of water absorption. Unlike composites cured conventionally, composites cured under CO(2) injection developed higher strength and toughness with increased fiber content. Incorporation of recycled MDF fibers into wood cement composites with CO(2) injection during the production stage presents a viable option for recycling of this difficult to manage waste material.  相似文献   

13.
The demand for biodegradable plastic material is increasing worldwide. However, the cost remains high in comparison with common forms of plastic. Requirements comprise low cost, good UV-stability and mechanical properties, as well as solubility and water uptake lead to the preparation of multi-component polymer blends based on polyvinyl alcohol and starch in combination with waste products that are hard to utilize—waste lignin and hydrolysate extracted from chromium tanned waste. Surprisingly the addition of such waste products into PVA gives rise to blends with better biodegradability than commercial PVA in an aquatic aerobic environment with non-adapted activated sludge. These blends also exhibited greater solubility in the water and UV stability than commercial PVA. Tests on the processing properties of the blends (melt flow index, tensile strength and elongation at break of the films) as well as their mechanical properties showed that materials based on these blends might be applied in agriculture (for example as the systems for controlled-release pesticide or fertilizer) and, somewhat, in the packaging sector.  相似文献   

14.
生物膜填料塔净化工业废气用填料的研究   总被引:11,自引:0,他引:11  
以净化低浓度甲苯废气为对象,采用实验室及工业化规模的 生物塔料塔对轻质陶块、瓷环、不锈钢环和塑料环4种填料进行选择研究,结果表明:轻质陶块是一种优质、廉价的废气处理用生物膜填料塔的填料;4种填料的净化性能及经济性的综合排序为:轻质陶块>瓷环>不锈钢环>塑料环;用轻质陶块填充的工程应用生物膜填料塔,在生物挂膜约10d时,甲苯的净化效率可达90%以上,且设备运行稳定。  相似文献   

15.
The municipal solid waste management significantly contributes to the emission in the atmosphere of greenhouse gases (e.g. CO2, CH4, N2O) and therefore the management process from collection to treatment and disposal has to be optimized in order to reduce these emissions. In this paper, starting from the average composition of undifferentiated municipal solid waste in Italy, the effect of separate collection on greenhouse gases emissions from municipal waste management has been assessed. Different combinations of separate collection scenarios and disposal options (i.e. landfilling and incineration) have been considered. The effect of energy recovery from waste both in landfills and incinerators has also been addressed. The results outline how a separate collection approach can have a significant effect on the emission of greenhouse gases and how wise municipal solid waste management, implying the adoption of Best Available Technologies (i.e. biogas recovery and exploitation system in landfills and energy recovery system in Waste to Energy plants), can not only significantly reduce greenhouse gases emissions but, in certain cases, can also make the overall process a carbon sink. Moreover it has been shown that separate collection of plastic is a major issue when dealing with global warming relevant emissions from municipal solid waste management.  相似文献   

16.
Materials recovered from solid waste in Bangkok are mainly glass bottles, paper and paper products, plastic products and metals. Materials are separated at three different stages of the collection process: at the source, prior to collection; by the crews of the collection vehicle; and by the scavengers at the dump site. The total daily tonnage of recyclable garbage collected at the source by the waste pickers is estimated at 286 tonnes, about 5% of the garbage collected by the city. There are small scale recycling shops (SSR) located around the main disposal sites where collected materials are sold by the collection crews and the scavengers. The quantity of materials delivered to the SSR shops by the collection crew vary between 1-6 tonnes per day. The amount of materials recovered by the scavengers (at the dump site) varies between 50-150 kg person-1 day-1. Therefore around 7.5% of the solid waste is recycled. In Bangkok both formal and informal sectors manufacture paper pulp, cardboard boxes and magazines from the recyclable paper. Paper products which account for 55% of the total waste stream are considered as the largest "product group" in the municipal solid waste. Recyclable glass (1-3% of the total waste stream) or cullet is used to manufacture plain glasses or cups. Plastics constitute about 10-15% of the waste stream. The benefit/cost ratios of production of most of these industries were reported to be higher than 1.5. In order to enhance recycling, legislative measures need to be introduced and enforced. In Thailand, there is, however, no law concerning recycling. There is no incentive for the consumer to separate solid waste for recycling, as the prices of waste in Bangkok are low and inconsistent. Therefore the pricing system should be more organized for recycling to be more effective.  相似文献   

17.
We report on the possibility of obtaining organic polymeric matrixes allowing the development of new high performance fire-resistant products by recycling downsized thermostable waste materials. Phenolic resins have been used as binders for recycled waste. Furthermore, considering that reinforced plastic triturations have superior properties (chemical, mechanical, water resistance, etc.) to wood agglomerates, significant advantages over conventional materials are anticipated. In summary, we propose a viable solution to some of the known problems caused by the consumption of wood and to the needs of strengthened plastic processing engineering. Using resins as a binder, several fire-resistant prototypes were prepared from polyester waste, and their mechanical properties, thermal stability, and fire-resistant properties were analyzed.  相似文献   

18.
The present study focuses on the use of solid waste generated by the steel works in Brazil for manufacturing clay-based structural products. The waste sample was characterized regarding chemical composition, X-ray diffraction, particle size, morphology, specific surface and plastic properties. The waste was added in gradual proportions to a kaolinitic clay from zero up to 3 wt.%. Ceramic bodies were formed by vacuum extrusion and fired at 950 degrees C. The physical-mechanical properties (linear shrinkage, water absorption, apparent density and flexural strength) of the resulting clay/solid waste mixtures were determined. In addition, leaching tests were performed according Brazilian Standards as well as a preliminary analysis of gases evolved during the thermal process. It was found that the solid waste is formed by irregular particles, ranging in size from 1 to 500 microm. The test results indicate that solid wastes generated by steel works can be used as filler in construction materials, thereby increasing reuse in an environmentally safe manner.  相似文献   

19.
The aim of this research was to separate waste plastics acrylonitrile butadiene styrene (ABS) and polystyrene (PS) by dissolved air flotation in a self-designed dissolved air flotation apparatus. The effects of wetting agents, frother, conditioning time and flotation time on flotation behavior of waste plastics ABS (w-ABS) and PS (w-PS) were investigated and the optimized separation conditions were obtained. The results showed that when using 25 mgL(-1) tannic acid, 5 mgL(-1) terpineol, 15 min conditioning time and 15 min flotation time, mixtures of w-ABS and w-PS were separated successfully by dissolved air flotation in two stages, the results revealed that the purity and recovery rate of w-PS in the floated products were 90.12% and 97.45%, respectively, and the purity and recovery rate of w-ABS in the depressed products were 97.24% and 89.38%, respectively. Based on the studies of wetting mechanism of plastic flotation, it is found that the electrostatic force and hydrophobic attraction cannot be the main factor of the interaction between wetting agent molecules and plastic particles, which can be completed through water molecules as a mesophase, and a hydrogen bonding adsorption model with hydration shell as a mesophase was proposed.  相似文献   

20.
With the rapid economic development of China and the improvement of people’s living standards, municipal plastic waste (MPW) has increasingly become a major problem for cities in China. The generation of plastic waste is a system which integrates social, economical and environment factors. There is a certain guiding significance for the determination of urban plastic waste management priorities to research MPW generation with the background of the regional development of the city. As the capital of China, Beijing develops with a typically regional characteristic. This article establishes a generation system model for MPW by the method of system dynamics, and takes Beijing as an example to simulate and forecast the MPW generations of four functional areas on scenarios. The data used in the model were mainly obtained from statistical materials and on-site survey. The results showed a better regulating effect of the generation of MPW of Beijing under an integrated control scenario. In terms of space, MPW generation of the urban function extended districts generated the largest amount of plastic waste, with the largest growth rate; the proportion of MPW generation of the new districts of urban development increased significantly. In terms of generation source, the resident communities source generated the largest amount of the MPW. Based on the results, some suggestions on MPW management are put forward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号