首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sex linkage among genes controlling sexually selected traits   总被引:8,自引:0,他引:8  
Using literature data on reciprocal crosses I estimated the influence of sex-chromosomal genes on morphological and behavioral traits. To determine a special role of the sex chromosomes for sexually selected traits, I compared the estimated influence of X-chromosomal genes on sexually selected traits with their estimated influence on traits not under sexual selection. About one-third of the phenotypic variation in sexually selected traits is caused by X-chromosomal genes. There was, in contrast, no significant influence of X-chromosomal genes on traits that were classified as not sexually selected. Sexually selected traits thus seem to be influenced significantly more by X-chromosomal genes than traits not under sexual selection. Though this differential influence of X-chromosomal genes cannot readily be explained with current theoretical knowledge, it may shed some light on X-linked hybrid sterility and on the discussion between arbitrary and good-gene models for the evolution of female choice. Received: 30 January 1998 / Accepted after revision: 20 June 1998  相似文献   

2.
Quantifying long-term size-selective harvest patterns is necessary for understanding the potential evolutionary effects on exploited species. The comparison of fishery selection patterns on the same species subject to different gear types, in different areas, and over multi-decadal periods can reveal the factors influencing selection. In this study we quantified and compared size-selective harvest by nine Alaskan sockeye salmon (Oncorhynchus nerka) fisheries to understand overall patterns. We calculated length-specific linear selection differentials (the difference in average length of fish before vs. after fishing), which are produced by different combinations of exploitation rates and length-selectivity values, and nonlinear standardized differentials, describing disruptive selection, across all years for each fishery. Selection differentials varied among years, but larger fish were caught in 73% of years for males and 84% of years for females, leaving smaller fish to spawn. Disruptive selection was observed on female and male fish in 84% and 92% of years, respectively. Linear selection was stronger on females than males in 77% of years examined, and disruptive selection was stronger on males in 71% of years. Selection pressure was influenced by a combination of factors under and beyond management control; analyses using mixed-effects models indicated that fisheries were less size selective in years when fish were larger than average and had lower exploitation rates. The observed harvest of larger than average sockeye salmon is consistent with the hypothesis that size-selective fishing contributes to decreasing age and length at maturation trends over time, but temporal variability in selection and strong disruptive selection suggests that the overall directional pressure is weaker than is often assumed in evolutionary models.  相似文献   

3.
The genetic expression of temperature tolerance in Eurytemora affinis Poppe in different environments was investigated by testing temperature tolerances of broods in pairs of salinity and temperature environments. Three methods were used to identify interaction between genotype and environment: (1) the correlation between mean tolerances of halves of broods grown in the two environments, (2) brood by environment interaction and (3) heritabilities in the two environments. All correlations between means of half broods were positive, only one of six brood by environment interactions was significant and the heritability estimates were not markedly different. Thus, the variability in temperature tolerance in different salinities and in different temperatures seems to be due to the same genes; and selection pressure on temperature tolerance is in the same direction with seasonal changes in temperature and salinity.  相似文献   

4.
A kin selection model is described for populations in which groups of interacting individuals (trait groups, sensu Wilson 1975) are spatially situated within larger aggregations. The model predicts the optimal foraging strategy when resources are shared with other trait group members and there is an individual risk in foraging. The ecological mechanism of variation in group fitness, differential resource accumulation, is explicitly incorporated into the model. The optimal foraging rate obtained from this model depends on the product of a benefit-to-cost ratio and a relatedness parameter. The appropriate definition of relatedness for the evolution of communal foraging is determined by the details of the ecological interaction between consumers and resources. When competition is purely intra-specific, the genetic correlation among interactants relative to other members of the local aggregation defines the relatedness parameter applicable to selection on foraging propensity. When competition is primarily inter-specific, the genetic correlation among trait group members relative to the entire population defines relatedness.  相似文献   

5.
Reconciling the evolution of altruism with Darwinian natural selection is frequently presented as a fundamental problem in biology. In addition to an exponentially increasing literature on specific mechanisms that can permit altruism to evolve, there has been a recent trend to establish general principles to explain altruism in populations undergoing natural selection. This paper reviews and extends one approach to understanding the ultimate causes underlying the evolution of altruism and mechanisms that can realise them, based on the Price equation. From the Price equation, we can see that such ultimate causes equate to the different ways in which the frequency of an altruistic allele in a population can increase. Under this approach, the ultimate causes underlying the evolution of altruism, given some positive fitness costs and benefits, are positive assortment of altruistic alleles with the altruistic behaviour of others, positive deviations from additive fitness effects when multiple altruists interact or bias in the inheritance of altruistic traits. In some cases, one cause can be interpreted in terms of another. The ultimate causes thus identified can be realised by a number of different mechanisms, and to demonstrate its general applicability, I use the Price equation approach to analyse a number of classical mechanisms known to support the evolution of altruism (or cooperation): repeated interaction, ‘greenbeard’ traits, games played on graphs and payoff synergism. I also briefly comment on other important points for the evolution of altruism, such as the ongoing debate over the predominant status of inclusive fitness as the best way to understand its evolution. I conclude by arguing that analysing the evolution of altruism in terms of its ultimate causes is the logical way to approach the problem and that, despite some of its technical limitations, the Price equation approach is a particularly powerful way of doing so.  相似文献   

6.
The geographic mosaic theory of coevolution states that variation in species interactions forms the raw material for coevolutionary processes, which take place over large geographic scales. One key assumption underlying the process of coevolution in plant-herbivore interactions is that herbivores exert selection on their host plants and that this selection varies among plant populations. We examined spatial variation in the existence and strength of phenotypic selection on host plant resistance exerted by specialist herbivores in 17 archipelago populations of the perennial herb Vincetoxicum hirundinaria (Asclepiadaceae). In these highly fragmented populations, V. hirundinaria is consumed by the larvae of two specialist herbivores: the folivorous moth Abrostola asclepiadis and the seed predator Euphranta connexa. Selection imposed on host plants by these herbivores was examined by analyzing the associations between levels of herbivory, plant fitness, and contents of a number of leaf chemicals reflecting plant resistance to and quality for the herbivores. We found extensive spatial variation in the levels of herbivory and in plant fitness. More importantly, the impact of both leaf herbivory and seed predation on plant fitness varied among plant populations, indicating spatial variation in phenotypic selection. In addition, leaf chemistry varied widely among plant populations, reflecting spatial variation in plant quality as food for the herbivores. However, leaf compounds influenced folivory similarly in all the studied plant populations, and interestingly, some of the compounds were associated with the intensity of seed predation. Finally, some of the leaf compounds were associated with plant fitness, and the strength and direction of these associations varied among plant populations. The observed spatial variation in the strength of the interactions between V. hirundinaria and its specialist herbivores suggests a geographic selection mosaic. Because the occurrence and strength of spatial variation varied between the two specialist herbivores, our results highlight the importance of considering multiple enemies when trying to understand evolution of interactions between plants and their herbivores.  相似文献   

7.
Levels of variation in eight large captive populations of D. melanogaster (census sizes ∼ 5000) that had been in captivity for periods from 6 months to 23 years (8 to 365 generations) were estimated from allozyme heterozygosities, lethal frequencies, and inversion heterozygosities and phenotypic variances, additive genetic variances ( V A), and heritabilities ( h 2) for sternopleural bristle numbers. Correlations between all measures of variation except lethal frequencies were high and significant. All measures of genetic variation declined with time in captivity, with those for average heterozygosities, V A, and h 2 being significant. The effective population size ( N e) was estimated to be 185–253 in these populations, only 0.037–0.051 of census size (N). Levels of allozyme heterozygosities declined rapidly in two large captive populations founded from another wild stock, being reduced by 86% and 62% within 2.5 years in spite of being maintained at sizes of approximately 1000 and 3500. Estimates of N e/ N for these populations were only 0.016 and 0.004. Two estimates of N e/ N for captive populations of D. pseudoobscura from data in the literature were also low at 0.036 and 0.012. Consequently, the rate of loss of genetic variation in captive populations and endangered species may be more rapid than hitherto recognized. Merely maintaining captive populations at large census sizes may not be sufficient to maintain essential genetic variation.  相似文献   

8.
Several studies on individual physiological traits assume that past records may predict future performance. Marine mollusks, as other animals, show a wide range of between- and within-individual variation of physiological traits. However, in this group, almost nothing is known about the relative influence of genetic factors on that variation. Repeatability (R) is a measure of the consistency of the variation of a trait, which includes its genetic variance and represents the maximum potential value of its heritability (h 2). Traits that show high inter-individual variation and high repeatability levels could potentially evolve through selection (natural or artificial). We estimated the repeatability [using intra-class (τ) and Pearson-moment (r) correlation coefficients] of several physiological traits related to energy acquisition and allocation in juvenile Pacific abalone Haliotis discus hannai, maintained under controlled environment growing systems. In order to estimate the range of the R values and the effect of the time elapsed between measurements on these estimates, we measured these traits monthly during 6 months for each individual. Among the physiological traits, those related to energy allocation like oxygen consumption (standard metabolic rate, SMR) and ammonium excretion rates, and oxygen/nitrogen ratio (O/N), showed intermediate levels of repeatability (0.48, 0.55 and 0.39, respectively), when this was estimated by τ coefficient. However, the r estimation showed that SMR and O/N repeatability were significant and high (0.6–0.7 and 0.5–0.7, respectively) during the first 5 consecutive measurements, decreasing strongly (0.3 and 0.2, respectively) during the last measurement. For ammonia excretion, although repeatability (r) decreased from 0.8 to 0.5 during the 6 consecutive measurements, they remain significant during the experimental period. Therefore, our results indicate that for H. discus hannai juveniles, physiological traits like SMR, ammonia excretion and O/N are significantly repeatable (i.e. good predictors of future measurements) during a period of 4–5 months. These significant repeatability values suggest an important genetic control upon the phenotypic variation of these physiological traits, and could potentially respond to natural or artificial selection, and be used in genetic improvement programs. By contrast, those traits related to energy acquisition (i.e. ingestion, absorption and assimilation) and physiological efficiencies (i.e. net growth and scope for growth) showed very low levels of repeatability (0–0.07). This indicates that the phenotypic variation of these traits would be more influenced by environment rather than by genetic factors.  相似文献   

9.
Traditionally, evolutionary ecology and conservation biology have primarily been concerned with how environmental changes affect population size and genetic diversity. Recently, however, there has been a growing realization that phenotypic plasticity can have important consequences for the probability of population persistence, population growth, and evolution during rapid environmental change. Habitat fragmentation due to human activities is dramatically changing the ecological conditions of life for many organisms. In this review, we use examples from the literature to demonstrate that habitat fragmentation has important consequences on oviposition site selection in insects, with carryover effects on offspring survival and, therefore, population dynamics. We argue that plasticity in oviposition site selection and maternal effects on offspring phenotypes may be an important, yet underexplored, mechanism by which environmental conditions have consequences across generations. Without considering the impact of habitat fragmentation on oviposition site selection, it will be difficult to assess the effect of fragmentation on offspring fitness, and ultimately to understand the impact of anthropogenic-induced environmental change on population viability.  相似文献   

10.
Summary Body size in the field cricket,Gryllus bimaculatus, contributes to fitness through its effects on competitive male mating success and female fecundity and is a character chosen by females at mating. If females are to benefit from preferentially mating with large males they must be able to pass on the advantages of large size to their offspring. The heritabilities of four aspects of body size were estimated by parent-offspring regression. All aspects were shown to have heritable genetic variation despite the fact that theory predicts characters which contribute to fitness should not be heritable. There may therefore be the potential for female choice in this species to be adaptive. Some possible mechanisms for the maintenance of heritable variation are discussed.  相似文献   

11.
Social aphid species provide ideal systems to study the ecological influences upon the evolution of sociality because they consist of discrete colonies which are entirely clonal and therefore devoid of any genetic conflict over altruistic behaviour. Although selfishness can be discounted as an obstacle preventing the evolution of altruistic defenders, the vast majority of aphid species are not social. To examine the key life-history and ecological characteristics that interact to facilitate social evolution, we designed a matrix population model based on the natural history of one of the unique aphid species with soldiers, Pemphigus spyrothecae. In addressing the life-history factors, our special interest was to examine the optimal trade-off faced by colonies that can increase their defence investment by producing defenders at birth and/or increasing the duration of the defensive stage. The level and period of exposure to predation and a declining colony birth rate were key factors that selected for social defence. The model demonstrated that, in species which have soldiers that can facultatively develop to make a direct contribution to colony fitness, temporal extension of the soldier stage is a key mechanism of increasing defence investment. This extension is particularly favoured when predation is high and the lifetime of a colony is long. An increase in production of defenders at birth was favoured when mortality due to predation was strongly biased towards defenders. The model suggests that, in species which have the defensive flexibility of choosing whether soldiers remain as such, there is little requirement for flexibility in the morph allocations made at birth. All these predictions were found to be fully compatible with the available empirical data.  相似文献   

12.
Summary Experiments were designed to determine the effects of male pigmentation patterns on female choice in guppies. When presented with a series of variably-colored males, females of different genetic strain consistently exhibited similar preferences (Tables 1 and 2), preferring those males with the greatest development of both carotenoid and iridescent pigments (Table 3). A partial rank correlation analysis of pigments of males indicates positive correlations between the iridescent and carotenoid pigments and also between melanins and showiness (Table 4). Only when either the carotenoid or iridescent pigments were held constant was there any effect of the other pigments on the ranking order of males by the females. Other pigments appear to be relatively unimportant in influencing female choice of males. These results indicate that females discriminate among males on the basis of color and that females of different strains prefer the same male colors rather than those characteristics of males of their own strain. The results support those models of sexual selection that hold that sexually selected traits honestly advertise the phenotypic and genetic qualities of males; they do not support models of runaway selection for particular male traits, such as first proposed by Fisher (1930).  相似文献   

13.
Andrew RL  Peakall R  Wallis IR  Foley WJ 《Ecology》2007,88(3):716-728
Exploring the spatial distribution of variation in plant secondary metabolites is critical for understanding the evolutionary ecology of biochemical diversity in wild organisms. In the present study, concentrations of foliar sideroxylonal, an important and highly heritable defense chemical of Eucalyptus melliodora, displayed strong, fine-scale spatial autocorrelation. The spatial patterns observed could promote associational effects on herbivore foraging decisions, which may influence the selection pressures exerted on sideroxylonal content. Multiple chemical traits have roles in certain eucalypt-herbivore interactions, and the spatial characteristics of the herbivore foraging environment are therefore determined by these different factors. We used a model of E. melliodora intake by common brushtail possums (Trichosurus vulpecula), based on the combined effects of two chemical traits, to explore this idea and found that the spatial patterns were different to those of sideroxylonal alone. Spatial genetic autocorrelation, examined using microsatellites, was strong and occurred at a fine scale, implying that restricted gene flow might allow genetic patches to respond to selection relatively independently. Local two-dimensional genetic autocorrelation, explored using a new heuristic method, was highly congruent with the pattern of local phenotypic variation observed for sideroxylonal, suggesting that the genetic variance underlying the sideroxylonal variation is similarly structured. Our results suggest that the spatial distribution of genetic and phenotypic variation could influence both the selective pressure imposed by herbivores on eucalypt defenses and the potential of populations to respond to natural selection. Spatial context should be considered in future studies of plant-herbivore interactions.  相似文献   

14.
We estimated the broad-sense heritability of larval size in 20 full-sib families of the giant scallop, Placopecten magellanicus (Gmelin, 1791) grown in laboratory culture in August and September 1991. The goal was to compare scallops with other bivalves which have been shown to have significant heritabilities for larval growth. Secondly, we estimated the lipid content of occytes from female parents, since this is hypothesized to affect larval growth and survival. Finally, we estimated the among-family variation in mortality from 4 to 21 d as a test of possible genetic variation for viability among larval scallops. Significant genetic variation (h2=1.10 to 1.24) was estimated for larval shell length at 4, 14, and 21 d. There was a significant correlation (r=0.66) between larval size at 4 d and lipid content of oocytes, but only when two females with high levels of lipid oocyte–1 were excluded as outliers. There was no correlation between larval size at 14 and 21 d and lipid content of oocytes. Mortality among families from 4 to 21 d was high (69 to 97%), and was significantly different among families. These results indicate that there is significant heritability for larval growth which is largely independent of the lipid content of the oocytes. A high heritability for larval growth may indicate that this trait is only weakly correlated with fitness.  相似文献   

15.
Guidelines for Subspecific Substitutions in Wildlife Restoration Projects   总被引:2,自引:0,他引:2  
Reintroduction of animals is becoming increasingly popular as a means of restoring populations of threatened species. Sometimes depletion of wild populations leaves only captive populations from which reintroduction projects can obtain founders for releases. The World Conservation Union guidelines on reintroductions recommend that the individuals to be reintroduced should be of the same subspecies as those that were extirpated. In some cases, however, a subspecies may have become extinct in the wild and in captivity. A substitute form may then be chosen for possible release. Such substitutions are actually a form of benign introduction. Considerations include assessment of the value of a substitution project and the selection of a suitable substitute. Species substitutions increase biodiversity, conserve related forms, improve public awareness of conservation issues, educate the public, and may be implemented for aesthetic or economic reasons. Selection of a suitable substitute should focus on extant subspecies and consider genetic relatedness, phenotype, ecological compatibility, and conservation value of potential candidates. An example of a substitution project is the reintroduction of the North African Red-necked Ostrich (  Struthio camelus camelus ) into areas once occupied by the now extinct Arabian Ostrich (  Struthio camelus syriacus ). S. c. camelus was chosen as a substitute because of its geographic proximity, phenotypic similarity, and conservation value. The World Conservation Union's reintroduction guidelines should be consulted before a project is begun.  相似文献   

16.
Urban MC  Skelly DK 《Ecology》2006,87(7):1616-1626
The metacommunity framework predicts that local coexistence depends on the outcome of local species interactions and regional migration. In analogous fashion, spatial structure among populations can shape species interactions through evolutionary mechanisms. Yet, most metacommunity theories assume that populations do not evolve. Here, we evaluate how evolution shapes local species coexistence and exclusion within the multiscale and multispecies context embodied by the metacommunity framework. In general, coexistence in joint ecological-evolutionary models requires low to intermediate dispersal rates that can promote maintenance of both regional species and genetic diversity. These conditions support a set of key mechanisms that modify patterns of species coexistence including local adaptation, gene storage effects, genetic rescue effects, spatial genetic subsidies, and metacommunity evolution. Multispecies extensions indicate that correlated selection can further alter the outcome of interspecific interactions depending on the magnitude and direction of correlations and shape of fitness trade-offs. We suggest that an evolving metacommunity perspective has the potential to generate novel predictions about community structure and function by incorporating the genetic and species diversity that characterize natural communities. In adopting such a perspective, we seek to facilitate understanding about the interactions between evolutionary and metacommunity dynamics.  相似文献   

17.
Multiple-queen (polygyne) colonies of the introduced fire ant Solenopsis invicta present a paradox for kin selection theory. Egg-laying queens within these societies are, on average, unrelated to one another, and the numbers of queens per colony are high, so that workers appear to raise new sexuals that are no more closely related to them than are random individuals in the population. This paradox could be resolved if workers discriminate between related and unrelated nestmate sexuals in important fitness-related contexts. This study examines the possibility of such nepotism using methods that combine the following features: (1) multiple relevant behavioral assays, (2) colonies with an unmanipulated family structure, (3) multiple genetic markers with no known phenotypic effects, and (4) a statistical technique for distinguishing between nepotism and potentially confounding phenomena. We estimated relatedness between interactants in polygyne S. invicta colonies in two situations, workers tending egg-laying queens and workers feeding maturing winged queens. In neither case did we detect a significant positive value of relatedness that would implicate nepotism. We argue that the non-nepotistic strategies displayed by these ants reflect historical selection pressures experienced by native populations, in which nestmate queens are highly related to one another. The markedly different genetic structure in native populations may favor the operation of stronger higher-level selection that effectively opposes weaker individual-level selection for nepotistic interactions within nests. Received: 28 June 1996 / Accepted after revision: 6 October 1996  相似文献   

18.
Humans show intra- and intersexual variation in second (2D) relative to fourth (4D) finger length, men having smaller 2D:4D ratio, possibly because of differential exposure to sex hormones during fetal life. The relations between 2D:4D and phenotypic traits including fitness components reported by several studies may originate from the organizational effects that sex hormones have on diverse organs and their concomitant effect on 2D:4D. Evolutionary theory posits that sexual preferences are adaptations whereby choosy individuals obtain direct or genetic indirect benefits by choosing a particular mate. Since sex hormones influence both fitness and 2D:4D, hand sexual attractiveness should depend on 2D:4D, a hypothesis tested only in one correlational study so far. We first presented hand computer images to undergraduates and found that opposite-sex hands with long 2D and 4D were considered more sexually attractive. When we experimentally manipulated hand images by increasing or decreasing 2D and/or 4D length, women preferred opposite-sex hands that had been masculinized by elongating 4D, whereas men avoided masculinized opposite-sex right hands with shortened 2D. Hence, consensus exists about which hands are attractive among different opposite-sex judges. Finger length may signal desirable sex hormone-dependent traits or genetic quality of potential mates. Psychological mechanisms mediating hand attractiveness judgments may thus reflect adaptations functioning to provide direct or indirect benefits to choosy individuals. Because the genetic mechanisms that link digit development to sex hormones may be mediated by Hox genes which are conserved in vertebrates, present results have broad implications for sexual selection studies also in nonhuman taxa.  相似文献   

19.
Summary Kin-selection theory predicts that an individual's inclusive fitness should be affected by any interaction involving a relative. This may sometimes lead to the evolution of altruistic or tolerant behaviour towards non-relatives who can influence the fitness of relatives. Selective pressure for non-relatives to behave altruistically towards each other in such situations may not be reciprocal.  相似文献   

20.
Inheritance of dominance in honeybees (Apis mellifera capensis Esch.)   总被引:1,自引:0,他引:1  
Summary Hierarchies in worker dominance are well developed in reproductive workers of the Cape honeybee (Apis mellifera capensis Esch.). Elements that influence worker dominance (trophallactic behaviour, fecundity, queen substance content) are mainly genetically determined. The estimated values for the heritabilities in the broader sense range from 0.27 to 0.89. This genetically based hierarchy leads to new insight into the theory of natural selection in honeybees. Besides selection at the colony level, or selection at the level of reproductives, natural selection also operates at the level of the individual worker bee within a colony.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号