首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Species-specific rates of photosynthetic carbon uptake (P), chlorophyll a content and P versus irradiance (P-I), have been measured for cells of Pyrocystis noctiluca and P. fusiformis isolated from natural populations collected in the euphotic zone within and below the surface mixed layer in the Sargasso Sea. These same measurements and the assay for ribulose bis-phosphate carboxylase (RuBP-Case), have been made for cultures of P. noctiluca in a 12 h L: 12 h D photoperiod at 9 different constant or at changing light intensities. In nature chl a cell-1 was constant throughout the euphotic zone. The photosynthetic capacity (Pmax), of cells captured below the surface mixed layer was lower by a factor of 10 compared with cells collected from the surface mixed layer. The Pmax for P. noctiluca collected and incubated within the surface mixed layer was the same as for cell cultures grown under high light, non nutrient-limiting conditions, suggesting that photosynthesis in the natural system was not nutrient limited. In laboratory cultures under constant low light intensities, chl a cell-1 increased by a factor of 5 while both Pmax and RuBPCase activity decreased by a factor of ca 4 compared with high light intensities. In changing light intensities both Pmax and RuBPCase activities were decreased by factors of 4 during low light intervals while chl a cell-1 approached a constant intermediate value. The change in chl a cell-1 in response to prolonged exposure to constant low light intensities was first order with a rate constant of 0.33 d-1. For all irradiance conditions in culture, the P-I dependence could be described by the simple Michaelis-Menten formula. The ratio of Pmax to KI, (the light intensity where P=Pmax/2) was a constant with a Coefficient of Variation of 12%: The constancy of this ratio, the parallel changes in RuBPCase activity with Pmax and the constant chl a cell-1 in the Sargasso Sea imply that for P. noctiluca and presumably P. fusiformis in nature, a dark enzymatic step rather than changes in photosynthetic pigment concentrations may regulate the photosynthetic capacity in the changing photic environment.Contribution no. 1141 from McCollum-Pratt Institute and Department of Biology, The Johns Hopkins University. Supported by DOE contract no. EY 76S20 3278, NSF no. OCE 76-02571 and ONR no. N300014-81-C-0062  相似文献   

2.
Isochrysis galbana Parke, Strain CCAP 927/1, was grown in ammonium-limited batch culture under a 12 h light: 12 h dark illumination cycle. Samples were taken every 12 h over the 26 d period from lag phase through exponential into stationary phase (no net carbon fixation), with more frequent sampling at points of interest. Exponential cell-specific growth rate was 0.3 to 0.4d-1. Cell division occurred during the dark phase, while cell volume increase, ammonium uptake, and pigment synthesis occurred during the light. Stationary phase cells were small, and the lag phase was long (5 d) even though the C:N ratio had returned from 18 to 6.5 within 2 d, followed by synthesis of chlorophyll a. Net chlorophyll synthesis ceased within 4 d of exhaustion of the nitrogen source. The chlorophyll c: chlorophyll a ratio remained constant during increasing nitrogen deprivation. Biovolume and carotenoids correlated with carbon biomass. Levels of chlorophyll a correlated poorly with carbon fixation and carbon biomass once the nitrogen source had been exhausted. Except after the addition of ammonium to nitrogen-deprived cells (refeeding), the content of intracellular glutamine and the glutamine: glutamate ratio were low during the dark phase, rising to a plateau within the first 1 h of illumination. Refeeding of cells which had only just exhausted the extracellular nitrogen source resulted in a much smaller increase in glutamine than refeeding of nitrogen-starved (stationary-phase) cells. Nitrogen biomass correlated with the presence of an unidentified intracellular amine.  相似文献   

3.
Skeletonema costatum (Greville) Cleve isolated from Narragansett Bay, USA, was incubated at 3 light intensities (ca. 0.008, 0.040 and 0.075 ly min-1) under a 12 h light: 12 h dark (12L:12D) photoperiod at 2°, 10° and 20°C. Cellular chlorophyll a increased at intensities less than ca. 0.040 ly min-1; increases occured within one photoperiod at temperatures above 10°C. Cellular carbohydrate increased with light intensity at all temperatures; increases during the photophase were due to net production of the dilute acid-soluble fraction. Cellular protein increased during the photoperiod at 10° and 20°C; there was little difference in cellular protein among all cultures after one photoperiod. The rate at which cellular chlorophyll a increased in response to a decrease in light suggests that diel variation in cellular chlorophyll a is temperature-dependent in S. costatum. Protein: carbohydrate ratios ranged from ca. 0.5 to 2.0 over a diel cycle; ratios increased at lower intensities and higher temperatures. The diel range in protein:carbohydrate ratios equals that in cultures developing nitrogen deficiency; thus, use of this ratio as an index to phytoplankton physiological state must account for diel light effects.  相似文献   

4.
J. G. Godin 《Marine Biology》1981,64(3):341-349
The circadian rhythm of swimming activity and the role of the daily illumination cycle in the synchronization of this rhythm were studied in individual juvenile pink salmon. Sixty eight percent of all fish examined (n=38) were day-active when exposed to a 12 h L:12 h D cycle; the remaining fish were nocturnally active. One half of the fish tested under laboratory conditions of continuous, constant light intensity (LL) and constant temperature showed unambiguously endogenous activity rhythms with circadian periods for up to 10 d. The remaining fish were arrhythmic. Mean period length of the free-running activity rhythms for diurnal fish in LL shortened with constant light intensity increasing from 6 to 600 lx, as predicted by the circadian rule. In contrast, mean free-running period for nocturnal fish did not vary significantly with similarly increasing constant light intensity. Mean swimming speed (activity level) of both diurnal and nocturnal fish increased significantly with increasing light intensity. This is suggestive of a positive photokinetic response. When subjected to a phase-delayed LD cycle, the fish resynchronized their daily rhythms of activity with this new LD cycle after only one transient cycle in most instances. Hence, the timing of the daily activity rhythms appeared to occur through the direct masking action of the illumination cycle on activity, rather than through entrainment of an endogenous circadian system.  相似文献   

5.
Adaptation of solitary corals, Fungia repanda and F. echinata, and their zooxanthellae to low light and ultraviolet light B (UV-B) was studied with respect to changes in their protein contents, photosynthetic pigment contents and the photosynthesis-irradiance (P-I) curves. The corals were collected from 1 to 50 m depths in the Republic of Belau (Paulau) in 1990 and 1991. The chlorophyll a content in a unit surface area of the coral did not change significantly with the depth of the habitat, whereas cellular chlorophyll a in the algae increased with the depth. Zooxanthellae density and protein content in a unit surface area of Fungia spp. decreased with the depth. Photosynthetic parameters normalized by a unit surface area of the Fungia spp., maximum gross photosynthetic rate (P gmax area-1) and dark respiration rate (R area-1), were negatively correlated with the depth, while initial slope of the P-I curve () did not show significant correlation with the depth. Compensation light intensity (Ic) decreased with the depth. In isolated zooxanthellae, P max chl a -1, and R chl a -1 decreased with the depth, while chl a was constant. P gmax cell-1 and R cell-1 did not change significantly but cell increased with the depth. Ic decreased with the depth as in the intact corals. Reduction of protein content in a unit area of the coral from deeper habitat implies decrease of host animal tissues. Reduction of Ic can be explained by decrease of R area-1, which may be due to the diminution of animal tissues. The photoadaptational response to low light intensity of intact Fungia spp. was found to be a combination of the photoadaptation of symbiotic algae and the decrease of host animal tissue. In order to study their adaptation to ultraviolet (UV) radiation, P-I curves of Fungia spp. and isolated zooxanthellae were analyzed before and after UV-B irradiation. 1 h UV-B irradiation showed no effect on the photosynthetic rate of the shallow water (1 m) corals, while it inhibited the photosynthesis of the deep water (30 m) corals and zooxanthellae isolated from both shallow and deep water corals. These results indicate that the host, Fungia spp., in shallow water have protective mechanism for intense UV-B in their habitat. These photoadaptational mechanisms seem to allow the Fungia spp. to have wide vertical distribution where light intensity spans more than two orders of magnitude.  相似文献   

6.
Time series of chlorophyll a, photosynthetic capacity and many physical parameters were sampled hourly for 167 h in August, 1975, at an anchor station located in the Middle Estuary of the St. Lawrence River, Canada. Sampling was carried out during the transition from neap tides to spring tides. The long-and short-term variations in chlorophyll a are coupled with the advection of water masses which depends on tidal currents. Vertical mixing also influences the chlorophyll a concentration of the cells, since it modifies the physiological state of the phytoplankton. Furthermore, circadian periodicities were observed in the photosynthetic capacity, suggesting that the phytoplankton of this area have a homogeneous light history due to strong vertical mixing. Under these conditions, the photosynthetic capacity is adapted to the mean light intensity in the mixed layer. The semimonthly (M f) variations of the mean light intensity in the mixed layer depend on the M f variations in the vertical mixing, whereas in the short-term, the variations in mean light intensity in the mixed layer are circadian.
Mélange vertical et capacité photosynthétique du phytoplancton estuarien (estuaire du Saint-Laurent)

Contribution au programme du Groupe interuniversitaire de recherches océanographiques du Québec (GIROQ)  相似文献   

7.
Circadian rhythms in photosynthesis were defined in field populations of phytoplankton. Measurements of carbon-dioxide fixation rates demonstrated that a diurnal periodicity of photosynthesis in samples incubated under natural light-dark (LD) cycles also were observed to continue in similar samples which had been photoadapted to constant dim light (LL) for 48 h. These changes in photosynthetic rates preceded sunset and sunrise, had daily amplitudes that ranged from 1.5 to 2.0, appeared to be independent of light-intensity, and displayed maxima about midday, while rates of dark fixation of carbon dioxide and the photosynthetic pigment content per cell were constant over the circadian cycle. Similar rhythmicity also was detected in room-temperature (22°C) chlorophyll a fluorescence yield, in both the obsence and presence of the photosynthesis inhibitor DCMU [3-(3,4-dichlorophenyl)-1, 1-dimethylurea]. However, the magnitude and timing of the fluorescence rhythm maxima seem to depend on wavelengths monitored and, in part, on the measuring technique used. Also, the circadian changes in the fluorescence intensity were abolished at low temperature (-60°C), and the shape of the emission spectra of chlorophyll fluorescence of cells in LD and LL did not change over time. The significance of the fluorescence rhythms with regard to chlorophyll a determinations and photosynthetic rates is discussed. It was concluded that there was sufficient similarity between circadian rhythms of photosynthesis in natural phytoplankton populations and in laboratory cultures of dinoflagellates to suggest that the mechanism of regulation may be the same for both of them.  相似文献   

8.
Cultures of the marine dinoflagellate Glenodinium sp. were light-shifted and rates of photoadaptation determined by monitoring changes in cell volume, growth rate, pigmentation, parameters of the photosynthesisirradiance (P-I) curves and respiration. To approximate physiological conditions of field populations, cells were cultured on an alternating light-dark cycle of 12hL:12hD, which introduced a daily periodicity of photosynthesis. One result of the present study was to demonstrate how specific parameters of the P-I relationship influenced by periodicity of the light: dark cycle are distinguished from photosynthetic parameters influenced by changes in light level. Under steady-state conditions, rates of both light-saturated (Pmax) and light-limited photosynthesis changed in unison over the day; these changes were not related to pigmentation, and displayed their maxima midday. This close relationship between Pmax and the slope (a) of the cellular P-I curves in steadystate conditions was quickly adjusted when growth illumination was altered. Rates of light-limited photosynthesis were increased under low light conditions and the periodicity of cellular photosynthesis was maintained. The short-term responses of the P-I relationship to changing light level was different, depending on (1) whether the light shift was from high to low light or vice versa, and (2) whether the high light levels were sufficient to promote maximal photosynthesis rates. Major increases in the photosynthetic carotenoid peridinin, associated with a single type of light-harvesting chromo protein in the chloroplast, was observed immediately upon shifting high light cultures to low light conditions. Following pigment synthesis, significant increases in rates of light-limited photosynthesis were observed in about one-tenth the generation time, while cellular photosynthetic potential was unaffected. it is suggested that general results were consistent with suggested that general results were consistent with earlier reports that the major photoadaptive strategy of Glenodinium sp. is to alter photosynthetic unit (PSU) size. Photoadaptive response times to high light were light-dependent, but appeared to be shower than photoadaptive responses to low light. If light intensities were bright enough to maximize growth rates, photosynthetic response times were on the order of a generation period and pigmentation fell quickly as cells divided at a faster rate. If light-intensities were not sufficient to maximize growth rates, then pigment content did not decline, while rates of light-limited photosynthesis declined quickly. In all cases, photoadaptation was followed best by monitoring fast changes in half saturation constants for photosynthesis, rather than fluctuating changes in pigmentation. Results compared well with time-course phenomena reported for other groups of phytoplankton. Overall, results suggest phytoplankton can bring about photo-induced changes in photosynthesis very quickly and thus accommodate widely fluctuating light regimes over short periods of time.  相似文献   

9.
Diel periodicity in cellular chlorophyll content in marine diatoms   总被引:2,自引:0,他引:2  
Owens  T. G.  Falkowski  P. G.  Whitledge  T. E. 《Marine Biology》1980,59(2):71-77
Intracellular chlorophyll a content is one of the many measurable parameters which displays a diel rhythm in marine phytoplankton. In asynchronous laboratory cultures of the diatom Skeletonema costatum, cellular chlorophylls a and c exhibit periodicities which closely follow the light-dark cycle and are not the result of cell division. The laboratory cultures also exhibit diel rhythms in cellular flourescence properties and carbon: chlorophyll a ratios. The occurrence of similar patterns of cellular flourescence, carbon: chlorophyll a ratios, and in situ flourescence in diatom-dominated natural phytoplankton communities suggests the possibility of diel rhythms in cellular chlorophyl a content in diatoms in the sea. The data also suggest that the observed periodicity in cellular chlorophyll content is regulated by the diel light cycle and that the co-occurrence of synchronous or phased cell division would only modify the observed periodicity.This research was performed under the auspices of the United States Department of Energy under Contract No. EY-76-C-02-0016  相似文献   

10.
Hameedi  M. J. 《Marine Biology》1978,48(1):37-46
Measurements of primary productivity, chlorophyll a, incident solar radiation, phosphate-P, silicate-Si, nitrate-N, nitrite-N, ammonium-N, temperature and salinity were made in the Marginal Ice Zone of the Chukchi Sea in summer 1974. Low to moderate levels of primary productivity (0.07 to 0.97 g C m-2 half-day-1) were observed; primary productivity exceeded 3 g C m-2 half-day-1 at two stations. Surface primary productivity was nitrogen-limited at most stations. Mean chlorophyll a concentration in the photic zone varied from 0.4 to 17.8 mg m-3. Higher concentrations and significant subsurface accumulation of chlorophyll a, reaching 40 mg m-3, were observed in July at stations near the ice-edge than those in open water. No chlorophyll maximum was noted in September, when values ranged from 0.4 to 2.2 mg m-3. It is postulated that the contribution of sea-ice algae to the total chlorophyll content can be substantial, but that the stay of these cells in the water column may not be long. Non-linear regression estimates from solar radiation and chlorophyll-specific primary productivity data showed a maximal photosynthetic rate of 18 mg C mg chlorophyll a -1 half-day-1, an optimal light intensity of 54 langleys half-day-1, and markedly reduced primary productivity at moderately higher light intensities. These features indicate that phytoplankton was shade-adapted.  相似文献   

11.
In order to test the ability of phytoplankton to adapt to the high frequency light fluctuations induced by sea surface waves, the green alga Dunaliella tertiolecta was grown under both steady and fluctuating (0.1, 1.0 and 10 Hz) illuminations. The latter conditions reproduced those fluctuations experienced by phytoplankton in the upper photic layer. For each culture, photosynthesis versus irradiance were measured under four incubation frequencies (steady, 0.1, 1.0 and 10 Hz fluctuating illuminations). Results indicated that growth rates were similar for algae grown under steady light and 10 Hz fluctuating light (0.26–0.33 d–1). Cells grown at 0.1 and 1.0 Hz showed lower growth rates (0.17–0.26 d–1). Chlorophyll a and b were significantly higher under 0.1 and 10 Hz frequencies than under steady illumination; at 1.0 Hz, there were no significant differences with steady light. No changes in carotenoids were evidenced at any frequency tested. Photosynthetic measurements showed that algae grown under steady illumination had higher photosynthetic efficiency and capacity when incubated under steady and 0.1 Hz fluctuating light. Photosynthetic characteristics of algae grown under 0.1 Hz illumination did not show any clear responses to fluctuating light. Algae grown under 1.0 or 10 Hz had higher photosynthetic efficiency and capacity than those grown under steady illumination, when incubated under 1.0 and 10 Hz light. This suggests that microalgae grown under high frequency illumination (1.0 and 10 Hz) can adapt their photosynthetic characteristics to the rapidly fluctuating light regime experienced during growth, and that algae grown under steady conditions respond better to steady or slowly fluctuating (0.1 Hz) light. Such an adaptation provides a means of probing the photosynthetic responses of phytoplankton to vertical mixing.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

12.
J. Marra 《Marine Biology》1978,46(3):191-202
Parameters of photosynthesis and growth were measured for a marine diatom (Lauderia borealis) grown in axenic continuous culture under three different light regimes: constant, simulated diurnal variation, and fluctuating. The light fluctuations were systematic increases and decreases in light intensity superimposed on the diurnal regime. In the first two regimes, a morning maximum and an afternoon depression in photosynthesis were observed. In the fluctuating light regime, the afternoon depression was less pronounced and the morning maximum was enhanced. The results may be explained by postulating a time-dependent value for the light-saturated rate of photosynthesis. Light utilization [mmol O2 cell-1 (E m-2)-1] was the same for the diurnally varying and fluctuating regimes, despite the fact that the peak light intensity in the fluctuating regime was double that of the diurnally varying regime.  相似文献   

13.
In 1981 two large (1 200 1) seawater samples from the St. Lawrence Estuary were kept under constant temperature and light conditions for periods of 50 and 68 h, respectively. In both tank experiments, semidiurnal variations in NH4 were observed that could be related to cyclical NH4 uptake by the phytoplankton. Semidiurnal cycles in photosynthetic efficiency (B) and intracellular chlorophyll a in the tank, phased on tides at sea, were also evidenced in both experiments. These results support the hypothesis that variations in phytoplankton photosynthetic activity, which are possibly endogenous, can be phased on semidiurnal variations in vertical tidal mixing (variations of the mean light conditions in the mixed layer). In addition, observed variations in intracellular chlorophyll a suggest the possibility of endogenous cycles of phytoplankton light and shade adaptation.Contribution to the program of GIROQ (Groupe interuniversitaire de recherches océanographiques du Québec)  相似文献   

14.
 Effects of nutrient treatments on photoacclimation of the hermatypic coral Stylophora pistillata (Esper) were studied. Studies on photoacclimation of colonies from different light regimes in the field were evaluated and used to design laboratory experiments. Coral colonies were collected in the Gulf of Eilat (Israel) from January to March 1993. Exterior branches of colonies from different depths (1 to 40 m) displayed different trends in production characteristics at reduced and very low levels of illumination. From 24 ± 3% to 12 ± 2% of incident surface photosynthetic active radiation (PARo), zooxanthella population density and chlorophyll a+c per 106 zooxanthellae increased, a trend seen in the range of light levels optimal for coral growth (90 to 30% PARo). The P max of CO2 per 106 zooxanthellae decreased, while P max of CO2 per 103 polyps increased, indicating an increase in zooxanthella population density at low light levels. Proliferous zooxanthella frequency (PZF, a measure of zooxanthella division) declined significantly at light levels <18 ± 3% PARo. At the lowest levels of illumination (<5% PARo), zooxanthella population density decreased, as did the PZF; chl a+c per 106 zooxanthellae was unchanged. In 28-d experiments, exterior coral branches from the upper surfaces of colonies from 3 m depth (65 ± 4% PARo) were incubated in aquaria under bright (80 to 90% PARo), reduced (20 to 30% PARo), and extremely low (2 to 4% PARo) light intensities. At each light intensity, the corals were maintained in three feeding treatments: sea water (SW); ammonium enriched SW (SW + N); SW with Artemia salina nauplii (SW + A). An increase in P max of CO2 per 103 polyps was found in corals acclimated to reduced light (20 to 30% PARo) in nutrient-enriched SW, while in SW, where the increase in zooxanthella population density was smaller, it did not occur. Nutrient enrichments (SW + N at 2 to 4% PARo and SW + A at 20 to 30% PARo) increased zooxanthella population density, but had no effect on chl a+c per 106 zooxanthellae. Acclimation for 14 d to reduced (10 to 20% PARo) and extremely low (1 to 3% PARo) light intensities shifted 14C photoassimilation into glycerol and other compounds (probably glycerides), rather than sugars. Both ammonium addition and feeding with Artemia salina nauplii resulted in an increase in photosynthetic assimilation of 14C into amino acids. We conclude that acclimation to reduced light consists of two processes: an increase in photosynthetic pigments and in zooxanthella population density. Both processes require nitrogen, the increase in zooxanthella population density needing more; this adaptation is therefore limited in nitrogen-poor sea water. Received: 19 June 1998 / Accepted: 13 June 2000  相似文献   

15.
Skeletonema costatum (Grev.) Cleve grown in batch culture at low light intensity under a 14 h light: 10 h dark photocycle showed exponential cell proliferation (1.1 doublings d-1) without significant phasing of the cell division by the light: dark cycle. The growth in carbon concentration was, however, restricted to the light period. The turbidity of the culture closely followed the carbon oattern, and was not affected by the increase in the cell number during the dark period. It was found that a trustule suspension had only approximately 1% of the turbidity of the corresponding intact algae. Culture turbidity was therefore regarded as a biomass parameter similar to the carbon concentration, without direct correlation to the timing of the cell division. The short-time variations in the turbidity of growing algal cultures were further studied in a cage culture turbidostat. The growth rate (based on turbidity) increased rapidly during the first half of the light period, decreased slightly towards the evening and was zero throughout the dark period. When transformed to continuous light, the growth of the culture continued to show damped oscillations for up to 1 wk, but with a period of 26.7 h instead of 24 h. The same circadian rhythm was observed in chlorophyll content, and is thus possibly a reflection of a freely oscillating internal biological clock. The cage culture turbidostat was found to be a suitable device for studies of the photocycle related regulation of biosynthesis in S. costatum.  相似文献   

16.
Phytoplankton pigments and species were studied at a coastal station off Sydney (New South Wales, Australia) over one annual cycle. Sudden increases in chlorophyll a (up to 280 mg m-2), due to short-lived diatom blooms, were found in May, July, September, January and February. These were superimposed upon background levels of chlorophyll a (20 to 50 mg m-2), due mostly to nanoplankton flagellates, which occurred throughout the year. The nanoplankton (<15 m) accounted for 50 to 80% of the total phytoplankton chlorophyll, except when the diatom peaks occurred (10 to 20%). The annual cycle of populations of 16 dominant species-groups was followed. Possible explanations as to alternation of diatom-dominated and nanoplankton-dominated floras are discussed. Thin-layer chromatography of phytoplankton pigments was used to determine the distribution of algal types, grazing activity, and phytoplankton senescence in the water column. Chlorophyll c and fucoxanthin (diatoms and coccolithophorids) and chlorophyll b (green flagellates) were the major accessory pigments throughout the year, with peridinin (photosynthetic dinoflagellates) being less important. Grazing activity by salps and copepods was apparent from the abundance of the chlorophyll degradation products pheophytin a (20 to 45% of the total chlorophyll a) and pheophorbide a (10 to 30%). Chlorophyllide a (20 to 45%) was associated with blooms of Skeletonema costatum and Chaetoceros spp. Small amounts of other unidentified chlorophyll a derivatives (5 to 20%) were frequently observed.  相似文献   

17.
We conducted a study of the relationship between changes in photosynthetic pigment content and water depth in Great Harbor near Woods Hole, Massachusetts, USA, on the green algae Ulva lactuca and Codium fragile and the red algae Porphyra umbilicalis and Chondrus crispus. A calibrated underwater photometer equipped with spectral band filters measured light attenuation by the water column. The depth required for a 10-fold diminution of photon flux was 3.6, 5.3, 6.0 and 6.0 m for red, blue, yellow and green light, respectively. Seaweeds were attached to vertically buoyed lines and left to adapt for 7 days; then, with their positions reversed, they were allowed to readapt for 7 days. All species showed greater photosynthetic pigment content with increased depth. Further, the ratio of phycobiliproteins and chlorophyll b to chlorophyll a increased with depth. Changes in pigment content were reversible and occurred in the absence of cell division. There was a net loss of pigments near the surface (high irradiance), and subsequent synthesis when seaweeds were transferred to a position deep in the water column (low irradiance). In contrast, seaweeds which were found in intertidal habitats changed only their pigment concentration, and not pigment ratio, a phenomena analogous to higher plant sun and shade adaptation. Therefore, seaweeds modify their photon-gathering photosynthetic antennae to ambient light fields in the water column by both intensity adaptation and complementary chromatic adaptation.  相似文献   

18.
Photoadaption in marine phytoplankton: Response of the photosynthetic unit   总被引:3,自引:0,他引:3  
Some species of phytoplankton adapt to low light intensities by increasing the size of the photosynthetic unit (PSU), which is the ratio of light-harvesting pigments to P700 (reaction-center chlorophyll of Photosystem I). PSU size was determined for 7 species of marine phytoplankton grown at 2 light intensities: high (300 E m-2 s-1) and low (4 E m-2 s-1); PSU size was also determined for 3 species grown at only high light intensity. PSU size varied among species grown at high light from 380 for Dunaliella euchlora to 915 for Chaetoceros danicus. For most species grown at low light intensity, PSU size increased, while the percentage increase varied among species from 13 to 130%. No change in PSU size was observed for D. euchlora. Photosynthetic efficiency per chlorophyll a (determined from the initial slope of a curve relating photosynthetic rate to light intensity) varied inversely with PSU size. In contrast, photosynthetic efficiency per P700 was enhanced at larger PSU sizes. Therefore, phytoplankton species with intrinsically large PSU sizes probably respond more readily to the rapid fluctuations in light intensity that such organisms experience in the mixed layer.Contribution No. 1180 from the Department of Oceanography, University of Washington, Seattle, Washington, USA  相似文献   

19.
Diel changes in phytoplankton photosynthetic efficiency in Brackish waters   总被引:2,自引:0,他引:2  
From 18 to 23 September 1974, investigations on the diel changes in phytoplankton were carried out in the Baltic Sea. Every 4 h, water samples were collected from 2 and 15 m, and PO4, chlorophyll a, temperature, salinity, pH, phytoplankton composition and phytoplankton light photosynthesis relationship were determined. Continuous measurements of surface irradiance and some estimations of zooplankton were also made. P B (photosynthesis per unit chlorophyll a at low light levels of 2·10-2 cal cm-2 min-1) revealed only random variation during the sampling period, i.e., 1.0 to 1.6 mg C (mg chlorophyll a)-1 h-1. P m B (Light-saturated photosynthesis per unit of chlorophyll a) displayed pronounced diel fluctuations with the highest value of about 6 mg C (mg chlorophyll a)-1 h-1 around noon, and the lowest value of about 2.5 mg C (mg chlorophyll a)-1 h-1 during the night, during which latter period the value of P m B was more or less constant. Reasons for the diel fluctuations are discussed, and an equation which describes these fluctuations is proposed. Using this equation, the daily phytoplankton production estimated in incubators by a previously described method can be corrected for the time of day at which samples are collected.  相似文献   

20.
The marine diatoms Phaeodactylum tricornutum (Bohlin) and Thalassiosira pseudonana (Hasle and Heimdal) were grown under both continous illumination and a 14 h light: 10 h dark cycle at light intensities ranging from 1.53×10-4 to 2.95×10-1 ly min-1. Under both photoperiods, T. pseudonana exhibited higher division rates than P. tricornutum at high light intensities, but the reverse was true at all light intensities <3×10-3 ly min-1. Comparison of these results with available data on light-limited growth of other planktonic algae suggests that P. tricornutum may be unusually efficient at maintaining its cell division rate at low light intensity. This efficiency may contribute substantially to its success in turbid, nutrient-enriched mass algal culture systems, the only environments in which it is known to attain great numbers.Contribution No. 4086 from the Woods Hole Oceanographic Institution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号