首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antifungal potential of the pygidial gland secretion of the troglophilic ground beetle Laemostenus punctatus from a cave in Southeastern Serbia against cave-dwelling micromycetes, isolated from the same habitat, has been investigated. Eleven collected samples were analyzed and 32 isolates of cave-dwelling fungi were documented. A total of 14 fungal species were identified as members of the genera Aspergillus, Penicillium, Alternaria, Cladosporium, Rhizopus, Trichoderma, Arthrinium, Aureobasidium, Epicoccum, Talaromyces, and Fusarium. Five isolates were selected for testing the antifungal activity of the pygidial gland secretion: Talaromyces duclauxi, Aspergillus brunneouniseriatus, Penicillium sp., Rhizopus stolonifer, and Trichoderma viride. The microdilution method has been applied to detect minimal inhibitory concentrations (MICs) and minimal fungicidal concentrations (MFCs). The most sensitive isolate was Penicillium sp., while the other isolates demonstrated a high level of resistance to the tested agent. L. punctatus has developed a special mechanism of producing specific compounds that act synergistically within the secretion mixture, which are responsible for the antifungal action against pathogens from the cave. The results open opportunities for further research in the field of ground beetle defense against pathogens, which could have an important application in human medicine, in addition to the environmental impact, primarily.  相似文献   

2.
Environmental DNA (eDNA) detection of non-native species has considerable potential to inform management decisions, including identifying the need for population control and/or eradication. An invasive species of European concern is the Asian cyprinid fish, topmouth gudgeon (Pseudorasbora parva). Here, eDNA analyses were applied at a commercial angling venue in southern England to inform operations aiming to eradicate P. parva, which had only ever been observed in one of the venue’s seven unconnected angling ponds. Eradication of P. parva was initially attempted by repeated depletion of the population using fish traps (crayfish traps fitted with 5 mm mesh netting) and the introduction of native predators over a 4-year period. The very low number of P. parva captured following these eradication efforts suggested a possible population crash. Conventional PCR analysis of water samples using species-specific primers was applied to all seven ponds to confirm that P. parva was present in only one pond, that the eradication attempt had indeed failed and that the species’ distribution in the pond appeared to be restricted to three bankside locations. The continued presence of P. parva at these locations was confirmed by subsequent trapping. Water samples from an adjacent, unconnected stream were also analysed using the eDNA methodology, but no DNA of P. parva was detected. The results suggest that further management action to eradicate P. parva be focused on the pond shown to contain the isolated P. parva population and thereby eliminate the risk of further dispersal. This study is the first to apply eDNA analysis to assess the efficacy of an eradication attempt and to provide evidence that the species was unlikely to be present in the other ponds, thus reducing the resources needed to control the species.  相似文献   

3.
Norovirus (NoV) is a major cause of non-bacterial acute gastroenteritis worldwide, and the variants of genotype GII.4 are currently the predominant human strains. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been reported as the cause of gastroenteritis outbreaks in Asia, replacing the pandemic strain GII.4 Sydney 2012. The GII.17 Kawasaki 2014 variant has also been reported sporadically in patients with gastroenteritis outside of Asia, including Italy. In this study, 384 shellfish samples were subjected to screening for human NoVs using real-time PCR and 259 (67.4%) tested positive for Genogroup II (GII) NoV. Of these, 52 samples, selected as representative of different areas and sampling dates, were further amplified by conventional PCR targeting the capsid gene, using broad-range primers. Forty shellfish samples were characterized by amplicon sequencing as GII.4 (n = 29), GII.2 (n = 4), GII.6 (n = 2), GII.12 (n = 2), and GII.17 (n = 3). Sixty-eight water samples (39 seawater samples from the corresponding shellfish production areas and 29 water samples from nearby underwater sewage discharge points) were also tested using the above broad-range assay: eight NoV-positive samples were characterized as GII.1 (n = 3), GII.2 (n = 1), GII.4 (n = 2), and GII.6 (n = 2). Based on full genome sequences available in public databases, a novel RT-PCR nested assay specific for GII.17 NoVs was designed and used to re-test the characterized shellfish (40) and water (8) samples. In this second screening, the RNA of GII.17 NoV was identified in 17 additional shellfish samples and in one water sample. Upon phylogenetic analysis, these GII.17 NoV isolates were closely related to the novel GII.17 Kawasaki 2014. Interestingly, our findings chronologically matched the emergence of the Kawasaki 2014 variant in the Italian population (early 2015), as reported by hospital-based NoV surveillance. These results, showing GII.17 NoV strains to be widespread in shellfish samples collected in 2015 in Italy, provide indirect evidence that this strain has started circulating in the Italian population. Notably, using a specific assay, we were able to detect many more samples positive for GII.17 NoV, indicating that, in food and water matrices, broad-range assays for NoV may grossly underestimate the prevalence of some, less common, NoVs. The detection of the GII.17 strain Kawasaki 2014 in clinical, water and food samples in Italy highlights the need for more systematic surveillance for future disease control and prevention.  相似文献   

4.
5.
Noroviruses (NoV) are a major cause of gastroenteritis worldwide. Recently, a novel variant of NoV GII.17 (GII.P17_GII.17 NoV), termed Kawasaki 2014, has been increasingly reported in NoV outbreaks in Asia, and has also been described in Europe and North America. In this study, sewage samples were investigated to study the occurrence and genetic diversity of NoV genogroup II (GII) along a 6-year period. Moreover, the spread of GII.17 strains (first appearance and occurrence along time) was specifically assessed. A total of 122 sewage samples collected from 2011 to 2016 from four wastewater treatment plants in Rome (Italy) were initially tested using real-time RT-(q)PCR for GII NoV. Positive samples were subsequently subjected to genotypic characterization by RT-nested PCRs using broad-range primes targeting the region C of the capsid gene of GII NoV, and specific primers targeting the same region of GII.17 NoV. In total, eight different genotypes were detected with the broad-range assay: GII.1 (n = 6), GII.2 (n = 8), GII.3 (n = 3), GII.4 (n = 13), GII.6 (n = 3), GII.7 (n = 2), GII.13 (n = 2), and GII.17 (n = 3), with the latter two genotypes detected only in 2016. Specific amplification of GII.17 NoV was successful in 14 out of 110 positive samples, spanned over the years 2013–2016. The amplicons of the broad-range PCR, pooled per year, were further analyzed by next-generation sequencing (NGS) for a deeper analysis of the genotypes circulating in the study period. NGS confirmed the circulation of GII.17 NoV since 2013 and detected, beyond the eight genotypes identified by Sanger sequencing, three additional genotypes regarded as globally uncommon: GII.5, GII.16, and GII.21. This study provides evidence that GII.17 NoV Kawasaki has been circulating in the Italian population before its appearance and identification in clinical cases, and has become a major genotype in 2016. Our results confirm the usefulness of wastewater surveillance coupled with NGS to study the molecular epidemiology of NoV and to monitor the emergence of NoV strains.  相似文献   

6.
7.
The objectives of this work are to use gene sequence data to assess the hypothesis that the Lithodinae arose from ancestors with uncalcified abdomens in shallow waters of the North-East Pacific, investigate the monophyly and interrelationships of genera within the Lithodinae and to estimate the scale and minimum number of biogeographic transitions from the shallow environment to the deep sea and vice versa. To do this, phylogenetic analysis from three mitochondrial and three nuclear markers was conducted using minimum evolution, maximum likelihood and Bayesian methods. The Lithodinae as defined to include North Pacific genus Cryptolithodes may be paraphyletic, with the Hapalogastrinae and Cryptolithodes as sister taxa. This implies that the soft-bodied abdomen of the Hapalogastrinae might not be plesiomorphic for the Lithodidae. Paralomis, Lopholithodes, Phyllolithodes, Lithodes and Neolithodes share a common ancestor, from which the North Pacific Hapalogastrinae did not descend. Lithodid ancestors are likely to have had a north Pacific, shallow water distribution and to have had planktotrophic larvae. North Pacific genus Paralithodes is paraphyletic; P. brevipes is the most basal member of the genus (as sampled) while P. camtschaticus and P. platypus are more closely related to the genera Lithodes and Neolithodes. Genera Lithodes, Neolithodes and Paralomis (as sampled) are monophyletic if Glyptolithodes is included within Paralomis. Lopholithodes is closely related to, but not included within, the Paralomis genus. Paralomis is divided into at least two major lineages: one containing South Atlantic, West African, and Indian Ocean species, and the other containing Pacific and South American species. Several species of Paralomis do not resolve consistently with any other groups sampled, implying a complex and possibly rapid global evolution early in the history of the genus. Relationships within the Lithodes genus vary between analytical methods, suggesting that conclusions may not be stable. Consistently, however, Indian Ocean and Pacific forms—L. murrayi, L. longispina and L. nintokuae form a group separated from Atlantic species such as L. santolla, L. confundens, L. maja and L. ferox.  相似文献   

8.
Flower symmetry is considered a species-specific trait and is categorized in asymmetry, actinomorphic symmetry, bisymmetry and zygomorphic symmetry. Here we report on the intra-individual variation of flower symmetry in the genus Saxifraga and the influence of light, gravity and intrinsic factors on the development of flower symmetry. We tested five species—Saxifraga cuneifolia, Saxifraga imparilis, Saxifraga rotundifolia, Saxifraga stolonifera and Saxifraga umbrosa—concerning six flower parameters—angles between petals, petal length, petal pigmentation, angular position of carpels, movement of stamens and (only for S. imparilis and S. stolonifera) the length of the two lower elongated petals in regard to their position towards the stem. Specimens of all species were tested on a vertical clinostat as a gravity compensator, on a horizontal clinostat as a light incidence compensator and on a stationary control. The results show that the angle of incident light has no apparent impact on flower symmetry, whereas gravity affects the angular position of petals in S. cuneifolia and S. umbrosa and the petal colouration in S. rotundifolia. In S. cuneifolia and S. umbrosa, the absence of directional gravity resulted in the development of actinomorphic flowers, whereas the corresponding control flowers were zygomorphic. The development of flowers in S. rotundifolia was not altered by this treatment. The length of the two elongated petals in S. stolonifera and S. imparilis was not affected by gravity, but rather was determined by position of the flower within the inflorescence and resulted in asymmetrical flowers.  相似文献   

9.
This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.  相似文献   

10.
Freshwater biodiversity has been severely threatened in recent years, and to conserve endangered species, their distribution and breeding habitats need to be clarified. However, identifying breeding sites in a large area is generally difficult. Here, by combining the emerging environmental DNA (eDNA) analysis with subsequent traditional collection surveys, we successfully identified a breeding habitat for the critically endangered freshwater fish Acheilognathus typus in the mainstream of Omono River in Akita Prefecture, Japan, which is one of the original habitats of this species. Based on DNA cytochrome B sequences of A. typus and closely related species, we developed species-specific primers and a probe that were used in real-time PCR for detecting A. typus eDNA. After verifying the specificity and applicability of the primers and probe on water samples from known artificial habitats, eDNA analysis was applied to water samples collected at 99 sites along Omono River. Two of the samples were positive for A. typus eDNA, and thus, small fixed nets and bottle traps were set out to capture adult fish and verify egg deposition in bivalves (the preferred breeding substrate for A. typus) in the corresponding regions. Mature female and male individuals and bivalves containing laid eggs were collected at one of the eDNA-positive sites. This was the first record of adult A. typus in Omono River in 11 years. This study highlights the value of eDNA analysis to guide conventional monitoring surveys and shows that combining both methods can provide important information on breeding sites that is essential for species’ conservation.  相似文献   

11.
The tuatara (Sphenodon punctatus) from New Zealand is often—erroneously—identified as a ‘living fossil’, although it is the lone survivor of a large, successful radiation of Rhynchocephalia, sister taxon to squamates (lizards and snakes), that thrived through the Mesozoic and Cenozoic and experienced an intricate evolution of life histories and feeding habits. Within Rhynchocephalia, only Pleurosauridae are thought to be marine and piscivorous. Here, we present bone histological data of the Jurassic pleurosaurid Palaeopleurosaurus, showing osteosclerosis (i.e. bone mass increase) in its gastralia, and some osteosclerosis in its rib but no increase in bone mass in the femur, supporting a gradual skeletal specialization for an aquatic way of life. Similar to Sphenodon, the bone tissue deposited in Palaeopleurosaurus is lamellar zonal bone. The femoral growth pattern in Palaeopleurosaurus differs from that of terrestrial Sphenodon in a more irregular spacing of growth marks and deposition of non-annual (i.e. non-continuous) rest lines, indicating strong dependency on exogenous factors. The annual growth mark count in adult but not yet fully grown Palaeopleurosaurus is much lower when compared to adult individuals of Sphenodon, which could indicate a lower lifespan for Palaeopleurosaurus. Whereas the gastral ribs of Palaeopleurosaurus and Sphenodon are similar in composition, the ribs of Sphenodon differ profoundly in being separated into a proximal tubular rib part with a thick cortex, and an elliptical, flared ventral part characterised by extremely thin cortical bone. The latter argues against a previously inferred protective function of the ventral rib parts for the vulnerable viscera in Sphenodon.  相似文献   

12.
The aim of this study was to isolate and characterize Bacillus cereus bacteriophages of various origins. Twenty-seven bacteriophages against B. cereus were isolated from various Korean traditional fermented foods and soils. Plaque size, transmission electron microscopy, virulence profile, and in vitro lytic activity of bacteriophage isolates were examined. Transmission electron microscopy confirmed B. cereus bacteriophages belonging to the family Siphoviridae. Among B. cereus bacteriophages with broad host range, 18 isolates (66.7%) did not harbor any B. cereus virulence factors. Among them, bacteriophage strain CAU150036, CAU150038, CAU150058, CAU150064, CAU150065, and CAU150066 effectively inhibited B. cereus in vitro within 1 h. Therefore, they are considered potential candidates for controlling the contamination of B. cereus in food or other applications.  相似文献   

13.
Chinese softshell turtles (Pelodiscus spp.) are widely distributed, ranging from the Amur and Ussuri Rivers in the Russian Far East through the Korean Peninsula, Japan, and eastern, central, and southern China to southern Vietnam. In East and Southeast Asia, Chinese softshell turtles are traditionally exploited for food and have been farm-bred in China since the Spring and Autumn Period, more than 2400 years ago. Currently, the annual production of Pelodiscus amounts to 340,000 t in China alone. Using mitochondrial DNA (2428 bp) and five nuclear loci (3704 bp), we examined broad sampling of wild and farm-bred Pelodiscus to infer genetic and taxonomic differentiation. We discovered four previously unknown mitochondrial lineages, all from China. One lineage from Jiangxi is deeply divergent and sister to the mitochondrial lineage of Pelodiscus axenaria. The nuclear loci supported species status for P. axenaria and the new lineage from Jiangxi. Pelodiscus maackii and P. parviformis, both harboring distinct mitochondrial lineages, were not differentiated from P. sinensis in the studied nuclear markers. The same is true for two new mitochondrial lineages from Zhejiang, China, represented by only one individual each, and another new lineage from Anhui, Guangdong, Jiangxi and Zhejiang, China. However, Vietnamese turtles yielding a mitochondrial lineage clustering within P. sinensis were distinct in nuclear markers, suggesting that these populations could represent another unknown species with introgressed mitochondria. Its species status is also supported by the syntopic occurrence with P. sinensis in northern Vietnam and by morphology. In addition, we confirmed sympatry of P. axenaria and P. parviformis in Guangxi, China, and found evidence for sympatry of P. sinensis and the new putative species from Jiangxi, China. We also discovered evidence for hybridization in turtle farms and for the occurrence of alien lineages in the wild (Zhejiang, China), highlighting the risk of genetic pollution of native stock. In the face of the large-scale breeding of Pelodiscus, we claim that the long-term survival of distinct genetic lineages and species can only be assured when an upscale market segment for pure-bred softshell turtles is established, making the breeding of pure lineages lucrative for turtle farms. Our findings underline that the diversity of Pelodiscus is currently underestimated and threatened by anthropogenic admixture. We recommend mass screening of genetic and morphological variation of Chinese softshell turtles as a first step to understand and preserve their diversity.  相似文献   

14.
Sandy beach habitat where sea turtles nest will be affected by multiple climate change impacts. Before these impacts occur, knowledge of how nest site selection and hatching success vary with beach microhabitats is needed to inform managers on how to protect suitable habitats and prepare for scientifically valid mitigation measures at beaches around the world. At a highly successful green turtle (Chelonia mydas) rookery at Akumal, Quintana Roo, Mexico, we measured microhabitat characteristics along the beach crawl (rejected sites) and related nest site conditions (selected sites) to subsequent hatching success rates for 64 nesting events. To our knowledge, this is the first study to report environmental data along the nesting crawl for a green turtle population and the first to use natural breaks in the data to describe their preferred habitat ranges. Our results indicate that turtles were likely using a combination of cues to find nest sites, mainly higher elevations and lower sand surface temperatures (Kruskal-Wallis test, H?=?19.84, p?<?0.001; H?=?10.78, p?<?0.001). Hatching success was significantly and negatively correlated to sand temperature at cloaca depth (Spearman’s ρ?=??0.27, p?=?0.04). Indeed, the preferred range for cloaca sand temperatures at the nest site (26.3–27.5 °C) had significantly higher hatching success rates compared to the highest temperature range (Tukey HSD?=?0.47, p?=?0.05). Sand temperatures at various depths were intercorrelated, and surface and cloaca depth sand temperatures were correlated to air temperature (ρ?=?0.70, p?=?0.00; ρ?=?0.26, p?=?0.04). Therefore, rising air temperatures could alter sand temperature cues for suitable nest sites, preferred nest site ranges, and produce uneven sex ratios or lethal incubating temperatures. Elevation cues and preferred ranges (1.4–2.5 m) may also be affected by sea level rise, risking inundation of nests.  相似文献   

15.
16.
East African cichlids display extensive variation in sex determination systems. The species Astatotilapia calliptera is one of the few cichlids that reside both in Lake Malawi and in surrounding waterways. A. calliptera is of interest in evolutionary studies as a putative immediate outgroup species for the Lake Malawi species flock and possibly as a prototype ancestor-like species for the radiation. Here, we use linkage mapping to test association of sex in A. calliptera with loci that have been previously associated with genetic sex determination in East African cichlid species. We identify a male heterogametic XY system segregating at linkage group (LG) 7 in an A. calliptera line that originated from Lake Malawi, at a locus previously shown to act as an XY sex determination system in multiple species of Lake Malawi cichlids. Significant association of genetic markers and sex produce a broad genetic interval of approximately 26 megabases (Mb) using the Nile tilapia genome to orient markers; however, we note that the marker with the strongest association with sex is near a gene that acts as a master sex determiner in other fish species. We demonstrate that alleles of the marker are perfectly associated with sex in Metriaclima mbenjii, a species from the rock-dwelling clade of Lake Malawi. While we do not rule out the possibility of other sex determination loci in A. calliptera, this study provides a foundation for fine mapping of the cichlid sex determination gene on LG7 and evolutionary context regarding the origin and persistence of the LG7 XY across diverse, rapidly evolving lineages.  相似文献   

17.
Human noroviruses (HuNoVs) cause foodborne and waterborne viral gastroenteritis worldwide. Because HuNoV culture systems have not been developed thus far, no available medicines or vaccines preventing infection with HuNoVs exist. Some herbal extracts were considered as phytomedicines because of their bioactive components. In this study, the inhibitory effects of 29 edible herbal extracts against the norovirus surrogates murine norovirus (MNV) and feline calicivirus (FCV) were examined. FCV was significantly inhibited to 86.89 ± 2.01 and 48.71 ± 7.38% by 100 μg/mL of Camellia sinensis and Ficus carica, respectively. Similarly, ribavirin at a concentration of 100 μM significantly reduced the titer of FCV by 77.69 ± 10.40%. Pleuropterus multiflorus (20 μg/mL) showed antiviral activity of 53.33 ± 5.77, and 50.00 ± 16.67% inhibition was observed after treatment with 20 μg/mL of Alnus japonica. MNV was inhibited with ribavirin by 59.22 ± 16.28% at a concentration of 100 μM. Interestingly, MNV was significantly inhibited with 150 µg/mL Inonotus obliquus and 50 μg/mL Crataegus pinnatifida by 91.67 ± 5.05 and 57.66 ± 3.36%, respectively. Treatment with 20 µg/mL Coriandrum sativum slightly reduced MNV by 45.24 ± 4.12%. The seven herbal extracts of C. sinensis, F. carica, P. multiflorus, A. japonica, I. obliquus, C. pinnatifida, and C. sativum may have the potential to control noroviruses without cytotoxicity.  相似文献   

18.
We applied a multi-isotope approach to examine aspects of niche partitioning, competition, and mobility for rodents in the Central Highlands of Madagascar. Specifically, we used carbon (δ13C), nitrogen (δ15N), and strontium (87Sr/86Sr) isotope ratios in bone to investigate diet and mobility for endemic tufted tail rats (Eliurus spp.), and introduced black rats (Rattus rattus) and house mice (Mus musculus) within and outside a fragment of montane humid forest in the Ambohitantely Special Reserve. There was a clear spatial segregation in trapping success for different species: Eliurus was only in the forest interior and edge, Mus only outside of the fragment in a marsh and park housing complex, and Rattus in all habitats except the housing complex. We find only moderate support for mobility of rodents among habitats. Mus may routinely move between the marsh and housing complex. However, regular movement between the forest edge and interior, or between the forest fragment and surrounding grassland is not supported. Taxa appear to target different foods: Rattus tends to feed at a higher trophic level than Eliurus, and Mus consumes some C4 resources. To date, strontium isotopes have been underutilized in ecological research. Here, we show that they are highly complementary to carbon and nitrogen isotope data. Even in localities with relatively uniform underlying geology, it may be possible to distinguish individuals that regularly forage in different habitats.  相似文献   

19.
The evaluation of virus reduction in water reclamation processes is essential for proper assessment and management of the risk of infection by enteric viruses. Ultrafiltration (UF) with coagulation–sedimentation (CS) is potentially effective for efficient virus removal. However, its performance at removing indigenous viruses has not been evaluated. In this study, we evaluated the reduction of indigenous viruses by UF with and without CS in a pilot-scale water reclamation plant in Okinawa, Japan, by measuring the concentration of viruses using the real-time polymerase chain reaction (qPCR). Aichi virus (AiV) and pepper mild mottle virus (PMMoV) were targeted in addition to the main enteric viruses of concern for risk management, namely, norovirus (NoV) genogroups I and II (GI and GII) and rotavirus (RoV). PMMoV, which is a plant pathogenic virus and is present at high concentrations in water contaminated by human feces, has been suggested as a useful viral indicator. We also investigated the reduction of a spiked model virus (F-specific RNA bacteriophage MS2) to measure the effect of viral inactivation by both qPCR and plaque assay. Efficiencies of removal of NoV GI, NoV GII, RoV, and AiV by UF with and without CS were >0.5 to 3.7 log10, although concentrations were below the detection limit in permeate water. PMMoV was the most prevalent virus in both feed and permeate water following UF, but CS pretreatment could not significantly improve its removal efficiency (mean removal efficiency: UF, 3.1 log10; CS + UF, 3.4 log10; t test, P > 0.05). CS increased the mean removal efficiency of spiked MS2 by only 0.3 log10 by qPCR (t-test, P > 0.05), but by 2.8 log10 by plaque assay (t-test, P < 0.01). This difference indicates that the virus was inactivated during CS + UF. Our results suggest that PMMoV could be used as an indicator of removal efficiency in water reclamation processes, but cultural assay is essential to understanding viral fate.  相似文献   

20.
Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号