首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: Relationships between wind velocity and the vertical light attenuation coefficient (K0) were determined at two locations in a large, shallow lake (Lake Okeechobee, Florida, USA). K0 was significantly correlated with antecedent wind conditions, which explained as much as 90 percent of the daily variation in K0. Sub-surface irradiance began to change within 60 to 90 minutes of the time when wind velocity exceeded or dropped below a threshold value. Maximum one hour changes in K0 were > 50 percent, however, 20 to 30 percent changes were more common. The magnitude of change in K0 varied spatially based on differences in sediment type. K0 never exceeded 2.8 at a location where bottom sediments were dominated by a mixture of coarse sand and shells. In comparison, K0 exceeded 9 during episodic wind events where the bottom sediment was comprised of fine grain mud. Underwater irradiance data can be used to determine threshold wind velocity and account for the influence sediment type has on K0. Once a threshold velocity has been established, the frequency, rate, and duration of expected change in underwater irradiance can be evaluated. This is critical information for scientists who are studying algal productivity or other light-related phenomena.  相似文献   

2.
ABSTRACT: A method is reported for estimating the height of wind waves in any lake for a given wind condition. Maximum wind speeds from five climatological stations in and around Ilinois for the period of 1950–1972 were analyzed and the maximum wind speed for various durations and return periods were presented. Statistical analysis of wind wave data collected from Carlyle Lake indicated the Rayleigh distribution fitted the wave height distribution reasonably well and that the nondimensional energy spectra followed the (f/fm)-5 rule in the equilibrium range of frequencies. From a consideration of various forces and physical properties of riprap particles and water, a relationship was developed to estimate the stable weight of riprap particles. A practical design criteria is proposed to stabilize lake shores against wind waves.  相似文献   

3.
ABSTRACT: This paper presents a field investigation of collecting hydrodynamic and sediment data in Lake Okeechobee with analyses examining mechanisms affecting sediment resuspension in the lake. Lake Okeechobee is a large subtropical lake located in south central Florida. Three‐dimensional flow velocities, suspended solids concentrations (SSC), and temperatures at four locations were measured from January 18 to March 5, 2000. Analyses of these data indicate that wind is the dominant factor in driving flow velocities and therefore transporting suspended solids. Wind direction also affects the SSC, especially in the north central and west littoral areas of the lake. The surface and bottom velocity components frequently flow in opposite directions, forming a stratification of the water column and preventing suspended solids from settling out. This retention of SSC in the water column may have a strong impact on the water quality of Lake Okeechobee. This study provides valuable storm event data and mechanism analyses, which will improve our understanding of the transport of suspended solids, thermal exchanges, and flow patterns within Lake Okeechobee.  相似文献   

4.
ABSTRACT: The influence of sediment resuspension on the water quality of shallow lakes is well documented. However, a search of the literature reveals no deterministic mass-balance eutrophication models that explicitly include resuspension. We modified the Lake Okeechobee water quality model - which uses the Water Analysis Simulation Package (WASP) to simulate algal dynamics and phosphorus, nitrogen, and oxygen cycles - to include inorganic suspend. ed solids and algorithms that: (1) define changes in depth with changes in volume; (2) compute sediment resuspension based on bottom shear stress; (3) compute partition coefficients for ammonia and ortho-phosphorus to solids; and (4) relate light attenuation to solids concentrations. The model calibration and validation were successful with the exception of dissolved inorganic nitrogen species which did not correspond well to observed data in the validation phase. This could be attributed to an inaccurate formulation of algal nitrogen preference and/or the absence of nitrogen fixation in the model. The model correctly predicted that the lake is light-limited from resuspended solids, and algae are primarily nitrogen limited. The model simulation suggested that biological fluxes greatly exceed external loads of dissolved nutrients; and sediment-water interactions of organic nitrogen and phosphorus far exceed external loads. A sensitivity analysis demonstrated that parameters affecting resuspension, settling, sediment nutrient and solids concentrations, mineralization, algal productivity, and algal stoichiometry are factors requiring further study to improve our understanding of the Lake Okeechobee ecosystem.  相似文献   

5.
ABSTRACT: Lake Okeechobee, the third largest lake in the United States, is a shallow, mixing basin with annual total phosphorus concentrations ranging from 50–100 μg P/L. Data, mainly from unpublished agency reports, are analyzed to determine if nutrients limit phytoplankton, to describe spatial and temporal variability in trophic state parameters, and to evaluate conclusions obtained from empirical trophic state models. Algal bioassay experiments that have been used to assess nutrient limitation have produced equivocal results. However, seasonal minima in orthophosphorus and inorganic nitrogen indicate that both nutrients may be limiting seasonally. Strong, but reverse north-south gradients and large seasonal changes in phosphorus and nitrogen concentrations, show that empirical models based on annual phosphorus loadings or concentrations are not adequate to predict chlorophyll concentrations or other trophic state variables. Spatially-segmented, multi-class phytoplankton-nutrient models of seasonal phytoplankton responses that are coupled with hydrodynamic models may provide predictability in assessing effects of changing nutrient loads on phytoplankton composition and standing crop. Successful modeling efforts of responses to nutrients also must deal with resuspended and benthic algae, periphyton, and emergent and submergent aquatic plants that must play important trophic roles in some of the lake basin.  相似文献   

6.
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E.  相似文献   

7.
ABSTRACT: The ability to predict how streams and wetlands retain phosphorus (P) is critical to the management of watersheds that contribute nutrients to adjacent aquatic systems such as lakes. Field and laboratory experiments were conducted to determine the P assimilatory capacity of a stream (Otter Creek) in the Taylor Creek/Nubbin Slough Basin located north of Lake Okeechobee, Florida. Dominant soils in this basin are sandy Spodosols; landuse is primarily dairy farms and beef cattle pastures. Estimates of P assimilation show that sediments assimilate approximately 5 percent of the P load. Phosphorus assimilation rates in the stream were estimated using first-order relationships based on the total P concentration of the water column as a function of distance from the primary source. This method assumes minimal lateral inputs. Stream lengths required for one turnover in P assimilation were estimated to be in the range of 3–16 km. Laboratory studies using intact sediment cores indicated a P assimilation rate of 0.025 m day?1, and equilibrium P concentration of 0.16 ± 0.03 mg L?1 in the water column. Dissolved P concentration gradients in the sediments showed upward flux of P at water column P concentration of <0.16 mg L?1. Approximately 56–77 percent of the P assimilated in the above-ground vegetation during active growth was released or translocated within six months of senesence, suggesting short-term storage in above-ground vegetation. Bottom sediments and recalcitrant detrital plant tissue provide for long-term P assimilation in the creek. Although stream sediments have the potential to adsorb P, high flow rate and low contact period between water and sediment limits this process.  相似文献   

8.
ABSTRACT: A 17-year record of chlorophyll a at eight limnetic sampling stations was used to evaluate putative changes in the trophic status of Lake Okeechobee, a shallow polymictic lake located in the subtropical environment of South Florida. Significant spatial differences were observed in the temporal patterns and variability of chlorophyll a concentrations. The highest chlorophyll a values were found in the northern and northwestern regions of the lake. The center of the lake, subject to high levels of non-algal suspended solids, exhibited relatively low chlorophyll a values and coefficient of variation. The lowest chlorophyll a values were observed at the southernmost sampling station in the lake. This was also the station that showed a significant upward trend in annual mean chlorophyll a values over the 17-year period of record. Examination of the relationship between chlorophyll a and three key environmental variables (i.e., total phosphorus concentration, phosphorus loading, and lake stage) revealed significant correlations at two out of the eight stations. The overall results of this study indicate that spatial and temporal disparities in the distribution and dynamics of chlorophyll a in Lake Okeechobee mandate more temporally and spatially intense approaches to the evaluation of trophic state than used in previous studies.  相似文献   

9.
ABSTRACT: Landsat radiance values were processed at two different (single and double) levels of accuracy to estimate chlorophyll a, turbidity, and suspended sediment in Lake Okeechobee, Florida. Both ordinary least square and ridge regression analyses were used to establish a relationship between water quality parameters and Landsat radiance. Radiance measurements made at greater precision (double level) gave a better solution in this application. The ridge regression analysis for double level not only can reduce the total mean square error about 13–20 percent and confidence interval about 6–28 percent as compared to ordinary least square analysis, but it can also change the interpretation of analysis results.  相似文献   

10.
ABSTRACT: A simple, black-box lake model was developed for phosphorus, using nonlinear regression analysis on a data base of north temperate lakes. The uncertainty associated with the model was then combined with the parameter uncertainty and the independent variable uncertainty to provide an estimate of the confidence limits associated with a predicted value. The prediction uncertainty is often neglected, yet it is an important measure of the usefulness of a model. Prediction uncertainty reflects the modeler's confidence in the model, and it should be used by a decision maker as a weight indicating the value of the model prediction. A procedure is outlined that combined lake modeling and uncertainty analysis for use in lake quality assessment and lake management. An example is provided illustrating the use of this procedure in nutrient budget sampling design, data analysis, and the evaluation of lake management strategies for a 208 program in New Hampshire.  相似文献   

11.
ABSTRACT: A methodology to estimate the average monthly lake evaporation, E(τ), (month τ=1,12) for fresh water bodies located in the northeast United States is presented. The approach combines analysis of at‐site, lake‐specific vertical water temperature profile data and a previously developed regional air temperature based model approximation of the widely accepted modified Penman energy budget estimate of mean monthly potential evaporation, Ep(τ) (mm/day). The paper presents procedures to develop site‐specific estimates of Ep(τ) and to convert water temperature data to average monthly conductive heat flux, G(τ). With monthly estimates of G(τ), the average monthly potential evaporation, Ep(τ), is then convertible to estimates of the average monthly lake evaporation, E(τ). This new method permits a good estimate of site‐specific lake evaporation rates without the data and computational requirements of the Penman energy budget procedure nor the comparatively expensive, time consuming field eddy correlation approach.  相似文献   

12.
Johnson Sauk Trail Lake remains highly eutrophic, even though the watershed has long been returned to an undisturbed condition with permanent vegetative cover and with little or no land disturbance in the watershed. Internal regeneration of nutrients has been identified as the major source of nutrients to the lake. Lake destratification, selective harvesting and removal of weeds, and control of algal blooms using chelated copper sulfate application followed by potassium permanganate application have all been chosen as management techniques for improving water quality conditions in the lake. These in-lake techniques are considered not as palliative measures, but as necessary tools in enhancing the lake's water quality characteristics.  相似文献   

13.
ABSTRACT: An alum treatment in Long Lake (mean depth, 2 m) in 1980 has been effective at controlling internal loading of phosphorus for four years. The fifth summer after treatment, the lake returned to its pro-treatment state. Lake P content decreased from a summer average of 65 μg/L during 1976–1978 to about 30 μg/L during four years following treatment. In 1985, summer P content was 61 μg/L. Algal abundance, species composition, and transparency have responded proportionately with P. Alum effectiveness apparently declined because the floe layer tended to sink and become dispersed at a deeper level in the sediment, as well as become covered with new, P-rich sediment. Iron-reduction may be the principal mechanism for internal P loading, although the lake is unstratified and anoxia is usually not pronounced.  相似文献   

14.
ABSTRACT Physico-chemical data from 234 lakes were collected during the spring and summer of 1980 by the Quebec Ministry of the Environment, the Quebec Ministry of Recreation, Hunting and Fishing and the Canadian Wildlife Service. A statistical method, based on the joint use of factorial correspondence analysis and cluster analysis, was applied to these data to obtain a general picture of the spatial variability of a number of physico-chemical parameters related to the sensitivity or acidification of lakewaters. This method was first applied to the entire Quebec territory, and showed that the part of Quebec lying on the Canadian shield is especially vulnerable to acidification. The method also showed that the southwestern portion of this area of Quebec was more substantially affected by acid fallout. A detailed study of spatial variability over the shield area revealed the existence of greater spatial heterogeneity. More precisely, it was possible to pinpoint zones which are highly vulnerable to acid precipitation and zones whose lakes show clear signs of acidification resulting from such precipitation. These two statistical analyses led to a first general diagnosis on lake acidification in Quebec. They contributed to the rationalization of data acquisition in Quebec by delimitating zones where network density needs to be increased.  相似文献   

15.
ABSTRACT: Algal blooms, defined as chlorophyll α concentrations greater than 40 μg l?1, are common in Lake Okeechobee, Florida. Using logistic regression techniques, we have developed equations that relate limnological variables to algal bloom occurrence in four distinct open-water regions of this large shallow lake: central pelagic, northwest, southwest, and a transition region between the western and pelagic regions. Wind velocity and total phosphorus, which are closely related to resuspended material in the central region, are negatively related to algal bloom occurrence there. In the transition region, algal bloom occurrence is positively related to total nitrogen and wind velocity. Algal bloom occurrence is strongly and positively related to total nitrogen and total phosphorus concentrations in the western regions. The logistic regression model predicts an algal bloom probability greater than 95 percent in the northwest region when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.5 mg l?1. In the southwest region the model predicts algal bloom probability of 100 percent when total phosphorus exceeds 0.10 mg l?1 and total nitrogen exceeds 2.8 mg l?1. Given 1994 mean total phosphorus concentrations of 0.05 and 0.04 mg l?1 in the northwest and southwest regions, respectively, total nitrogen would have to remain below 1.32 and 1.43 mg l?1, respectively, to keep the algal bloom probability below 10 percent. Because the lake is heterogenous, such nutrient standards should be considered on an in-lake regional basis for Lake Okeechobee.  相似文献   

16.
ABSTRACT: Recovery of eutrophic lakes after nutrient diversion may be delayed if the lake experiences significant internal phosphorus (p) loading to the water column. A maximum dose of aluminum sulfate, defined herein, was applied to the anaerobic sediments of the hypolimnia of two dimictic Ohio lakes following septic tank diversion, with the objective of attaining long term control of the release of phosphorus to the water column from these sediments. The results were compared to a similar, downstream, untreated lake. Total phosphorus concentration declined sharply after treatment and has remained so through 1980 for both lakes, a period of 5 and 6 years of control, respectively. Internal P loading from anaerobic, hypolimnetic sediments was partially controlled by the treatment but there are other important sources, perhaps in the littoral zone, in these lakes. Algal biomass is Smaller and water transparency has increased. Both lakes became mesotrophic after treatment, as described by the Carlson (1977) trophic state index, and remain in that improved condition to date. No deleterious side effects were observed, although one lake experienced a significant decrease in diversity of planktonic microcrustacea and a lakeward extension of the macrophyte community. This method appears to be an effective and lasting means of accelerating the recovery of a eutrophic lake following nutrient diversion.  相似文献   

17.
Sedimentation rates and sediment provenance were examined for lacustrine sediments deposited in Fairfield Lake, western North Carolina, during the past 111 years. Stratigraphic, radionuclide, and cartographic data indicate that sedimentation rates have increased several fold during the past three decades in response to localized development. The magnitude of increased sedimentation was surprising given limited development within the basin: 0.12 to 0.68 buildings/ha in 2000 in those parts directly delivering sediment to the dated cores. Thus, the analysis illustrates the potential sensitivity of watersheds in the southern Appalachians to changes in land cover. An approach that combined geochemical fingerprinting with sediment mixing models was subsequently evaluated to determine its ability to accurately estimate the contribution of sediment from (1) major bedrock formations that underlie the watershed and (2) potential sources associated with four land cover categories. Sediment sources in both analyses proved difficult to geochemically fingerprint to greater than 90 percent accuracy using data on acid‐soluble metals and selected isotopes of lead (Pb). The relative contributions of sediment from delineated sources, estimated by the mixing models, generally corresponded with known temporal and spatial patterns of land cover. However, the models were plagued by two significant problems — the chemical alteration of sediments as they were transported through upland streams to depositional sites within the lake and the loss of elemental mass. Thus, future investigations using the fingerprinting approach in this area of intense weathering, and presumably others, will need to modify the existing methods to more accurately elucidate changes in sediment provenance related to development.  相似文献   

18.
ABSTRACT: The phytoplankton biomass of the Créteil Lake was characterized through 47 paired measurements of particulate organic carbon and chlorophyll. When determining the tranfers of organic carbon in the lake, the need to convert the phytoplankton biomass into carbon units led to the estimation of a carbon to chlorophyll ratio using regression analyses. An average C:Chl ratio of 80 was found. C:Chl has been found to be highly variable but the value commonly used is C:Chl = 40. In Créteil Lake, the high C:Chl value would characterize the nannoplankton that dominated in the lake. No general conversion factor apparently exists for natural populations; thus, more studies may be necessary for a better knowledge of the carbon budget in lakes.  相似文献   

19.
A three‐dimensional hydrodynamic model was applied to Lake Paldang, South Korea. The lake has three inflows, of which Kyoungan Stream has the smallest flow rate and poorest water quality. Since all drinking water intake stations are located near the confluence of Kyoungan Stream within the lake, this contaminated tributary may have a significant impact on the quality of drinking water sources. The optimum drinking water intake location was determined from the applied model. The model was calibrated and verified using the data measured under different hydrological conditions. The model results were in reasonable agreement with the field measurements in both calibration and verification. The circulation and spreading patterns of the incoming flows in the lake, as well as their composition ratios to the drinking water intakes were determined from the model, and three alternative intake locations were proposed. The simulation results suggested that the horizontal and vertical relocations of the intake aqueduct could significantly decrease the composition ratio of the contaminated water. From this study, it was concluded that the three‐dimensional hydrodynamic model could successfully simulate the temporal and spatial mixing patterns of incoming flows and become a useful tool in determining the optimum water intake location in Lake Paldang.  相似文献   

20.
ABSTRACT: Water quality in eutrophic Lake Tohopekaliga, Florida, improved markedly from 1982 to 1992 as a result of reductions in phosphorus and nitrogen loading to the lake. Annual budgets of water, chloride, phosphorus and nitrogen were constructed for the lake, and indicate it is a sink for phosphorus and a source for nitrogen. Water column concentrations of total phosphorus, soluble reactive phosphorus, total nitrogen, dissolved inorganic nitrogen, and chlorophyll a all declined as external inputs of nutrients decreased. Water column nitrogen: phosphorus ratios have increased, suggesting a probable shift from nitrogen- to phosphorus-limitation. This apparent shift in nutrient limitation status also is supported by comparisons of the mean Trophic State Indices for phosphorus, nitrogen, and chlorophyll a. These improvements in water quality are attributed to the diversion of wastewater treatment plant effluent from the lake, and the increased use of wet retention ponds for stormwater runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号