首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper recounts our predictions of channel evolution of the Black Vermillion River (BVR) and sediment yields associated with the evolutionary sequence. Channel design parameters allowed for the prediction of stable channel form and coincident sediment yields. Measured erosion rates and basin‐specific bank erosion curves aided in prediction of the stream channel succession time frame. This understanding is critical in determining how and when to mitigate a myriad of instability consequences. The BVR drains approximately 1,062 km2 in the glaciated region of Northeast Kansas. Once tallgrass prairie, the basin has been modified extensively for agricultural production. As such, channelization has shortened the river by nearly 26 km from pre‐European dimensions; shortening combined with the construction of numerous flow‐through structures have produced dramatic impacts on discharge and sediment dynamics. Nine stream reaches were established within three main tributaries of the BVR in 2007. Reaches averaged 490 m in length, were surveyed, and assessed for channel stability, while resurveys were conducted annually through 2010 to monitor change. This work illustrates the association of current stream state, in‐channel sediment contributions, and prediction of future erosion rates based on stream evolution informed by multiple models. Our findings suggest greater and more rapid sedimentation of a federal reservoir than has been predicted using standard sediment prediction methods.  相似文献   

2.
The drawdown of reservoirs behind dams is an important management strategy (e.g., for removal of aging infrastructure, flushing of sediment), and an opportunity to study erosional processes. A numerical model was developed to examine retrogressive bank erosion across reservoir drawdown scenarios and to evaluate factors controlling the rate, volume, and mechanisms of lateral erosion. Modeled processes included dynamic drawdown of groundwater, sequential slope failures via limit equilibrium analysis, and retrogression considering stress interaction between failing blocks. Field measurements were coupled with Staged, Slow, and Rapid drawdown scenarios. Results highlight the importance of including retrogression as an avenue for lateral erosion, as sequential block failures were found to occur in all scenarios except Slow drawdown. This result indicates that bank stability models without some means of characterizing the evolution of slope failure during drawdown are likely underestimating bank failure rates and volumes. In contrast, dynamic groundwater was not found to be a dominant control for any drawdown scenario. Model results also demonstrate that the drawdown increment is a first-order control on slope instability via the development of drained or undrained conditions. A majority of failures occurred under undrained conditions. To maximize slope stability, using slow drawdown to activate internal friction under drained conditions is essential. The design of the drawdown rate created a tradeoff between the amount of impact created and when the impact is produced. The study also articulated the need for coupling models and field observations for rapidly changing systems.  相似文献   

3.
ABSTRACT: Bank erosion along a river channel determines the pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for riparian vegetation to get established. Migration also erodes existing riparian, agricultural, and urban lands, sometimes damaging human infrastructure (e.g., scouring bridge foundations and endangering pumping facilities) in the process. Understanding what controls the rate of bank erosion and associated point bar deposition is necessary to manage large alluvial rivers effectively. In this study, bank erosion was proportionally related to the magnitude of stream power. Linear regressions were used to correlate the cumulative stream power, above a lower flow threshold, with rates of bank erosion at 13 sites on the middle Sacramento River in California. Two forms of data were used: aerial photography and field data. Each analysis showed that bank erosion and cumulative effective stream power were significantly correlated and that a lower flow threshold improves the statistical relationship in this system. These correlations demonstrate that land managers and others can relate rates of bank erosion to the daily flow rates of a river. Such relationships can provide information concerning ecological restoration of floodplains related to channel migration rates as well as planning that requires knowledge of the relationship between flow rates and bank erosion rates.  相似文献   

4.
The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil–water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30–40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The results of this study demonstrate that, if the overuse of river water cannot be controlled, the reduction of channel sedimentation in the lower Yellow River cannot be realized through the practice of erosion and sediment control measures.  相似文献   

5.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

6.
ABSTRACT: There is a need to provide flood protection while maintaining stable bed and bank conditions in the riverine system, to stabilize earth embankment dams and spiliways, and to stabilize highway or railway embankments and levee systems. One approach to providing erosion protection and stabilization of channel banks, embankments and spill conveyances is with articulated concrete block systems. Numerous articulated concrete block systems are available for bank stabilization. However, prior to field installations few means are available to evaluate how well these block systems perform. To assist the designer in predicting site specific suitability, a series of hydraulic testing protocols have been developed to analyze block system performance. Two articulated block system testing protocols are presented to indicate how block hydraulic characteristics may be determined and provide performance assurance to both the designer and the owner.  相似文献   

7.
Since the 1970s, the water fluxes to the sea of the Yellow River have declined significantly. Based on data of precipitation, air temperature, the measured and “natural” river flow, the water diversion and consumption, and the areas of erosion and sediment control measures over the drainage basin, water fluxes to the sea of the Yellow River are studied in relation with the influences of changing climate and human activities. The Yellow River basin can be divided into different water source areas; multiple regression indicates that the variation in precipitation over different water source areas has different effect on water fluxes to the sea. In the period between 1970 and 1997, averaged air temperature over the whole Yellow River increased by about 1.0°C, from 16.5°C to 17.5°C, a factor that is negatively correlated with the water yield of the Yellow River. Water diversion and consumption has sharply increased and resulted in a significant decline in the water fluxes to the sea. Since the 1960s, erosion and sediment control measures have been practiced over the drainage basin. This factor, to a lesser degree, is also responsible for the decrease in water fluxes to the sea. A multiple regression equation has been established to estimate the change in water fluxes to the sea caused by the changes in precipitation, air temperature, water diversion and consumption, erosion, and sediment control measures, indicating that the contribution of water diversion and consumption to the variation in annual water flux to the sea is 41.3%, that of precipitation is 40.8%, that of temperature is 11.4%, and that of erosion and sediment control measures is 6.5%.  相似文献   

8.
Phosphorus loss from bank erosion was studied in the catchment of River Odense, a lowland Danish river basin, with the aim of testing the hypothesis of whether stream banks act as major diffuse phosphorus (P) sources at catchment scale. Furthermore, the study aimed at analyzing the impact of different factors influencing bank erosion and P loss such as stream order, anthropogenic disturbances, width of uncultivated buffer strips, and the vegetation of buffer strips. A random stratified procedure in geographical information system (GIS) was used to select two replicate stream reaches covering different stream orders, channelized vs. naturally meandering channels, width of uncultivated buffer strips (≤ 2 m and ≥ 10 m), and buffer strips with different vegetation types. Thirty-six 100-m stream reaches with 180 bank plots and a total of 3000 erosion pins were established in autumn 2006, and readings were conducted during a 3-yr period (2006-2009). The results show that neither stream size nor stream disturbance measured as channelization of channel or the width of uncultivated buffer strip had any significant ( < 0.05) influence on bank erosion and P losses during each of the 3 yr studied. In buffer strips with natural trees bank erosion was significantly ( < 0.05) lower than in buffer strips dominated by grass and herbs. Gross and net P input from bank erosion amounted to 13.8 to 16.5 and 2.4 to 6.3 t P, respectively, in the River Odense catchment during the three study years. The net P input from bank erosion equaled 17 to 29% of the annual total P export and 21 to 62% of the annual export of P from diffuse sources from the River Odense catchment. Most of the exported total P was found to be bioavailable (71.7%) based on a P speciation of monthly suspended sediment samples collected at the outlet of the river basin. The results found in this study have a great importance for managers working with P mitigation and modeling at catchment scale.  相似文献   

9.
ABSTRACT: Thirteen years of annual habitat and fish sampling were used to evaluate the response of a small warm water stream in eastern Wisconsin to agricultural best management practices (BMPs). Stream physical habitat and fish communities were sampled in multiple reference and treatment stations before, during, and after upland and riparian BMP implementation in the Otter Creek subwatershed of the Sheboygan River watershed. Habitat and fish community measures varied substantially among years, and varied more at stations that had low habitat diversity, reinforcing the notion that the detection of stream responses to BMP implementation requires long term sampling. Best management practices increased substrate size; reduced sediment depth, embeddedness, and bank erosion; and improved overall habitat quality at stations where a natural vegetative buffer existed or streambank fencing was installed as a riparian BMP. There were lesser improvements at locations where only upland BMPs were implemented. Despite the habitat changes, we could not detect significant improvements in fish communities. It is speculated that the species needed to improve the fish community, mainly pollution intolerant species, suckers (Castomidae), and darters (Percidae), had been largely eliminated from the Sheboygan River watershed by broadscale agricultural nonpoint source pollution and could not colonize Otter Creek, even though habitat conditions may have been suitable.  相似文献   

10.
Sediment size and supply exert a dominant control on channel structure. We review the role of sediment supply in channel structure, and how regional differences in sediment supply and landuse affect stream restoration priorities. We show how stream restoration goals are best understood within a common fluvial geomorphology framework defined by sediment supply, storage, and transport. Landuse impacts in geologically young landscapes with high sediment yields (e.g., coastal British Columbia) typically result in loss of instream wood and accelerated sediment inputs from bank erosion, logging roads, hillslopes and gullies. In contrast, northern Sweden and Finland are landscapes with naturally low sediment yields caused by low relief, resistant bedrock, and abundant mainstem lakes that act as sediment traps. Landuse impacts involved extensive channel narrowing, removal of obstructions, and bank armouring with boulders to facilitate timber floating, thereby reducing sediment supply from bank erosion while increasing export through higher channel velocities. These contrasting landuse impacts have pushed stream channels in opposite directions (aggradation versus degradation) within a phase-space defined by sediment transport and supply. Restoration in coastal British Columbia has focused on reducing sediment supply (through bank and hillslope stabilization) and restoring wood inputs. In contrast, restoration in northern Fennoscandia (Sweden and Finland) has focused on channel widening and removal of bank-armouring boulders to increase sediment supply and retention. These contrasting restoration priorities illustrate the consequences of divergent regional landuse impacts on sediment supply, and the utility of planning restoration activities within a mechanistic sediment supply-transport framework.  相似文献   

11.
Diversion of water has been ongoing in the Mkuze Wetland for several decades. Two canals form the focus of this study; the Mpempe-Demazane Canal and the Tshanetshe Canal. The former involved an ambitious excavation over a distance of 13.5 km in the lower part of the wetland, while the latter was a minor excavation over a distance of approximately 100 m in the upper part of the wetland. Although ambitious and costly, the Mpempe-Demazane Canal resulted in little downward or headward erosion, and there was minor diversion of flow. However, the minor excavation of the Tshanetshe Canal resulted in erosion downstream of the excavation (the Tshanetshe Stream), downward and lateral erosion of the excavated section, and headward erosion that has propagated almost 4 km upstream along the Mkuze River. Most of the flow of the Mkuze River has been captured by the Tshanetshe Canal and Stream. The impact of canalisation on floodplain wetlands is thus more dependent on the location than the scale of activity. The avulsion of the Mkuze River into the Tshanetshe Canal and Stream is due to a large difference in elevation between the Mkuze River and floodplain into which it was diverted, and the fact that in this region the river typically has high discharges. This avulsion may have been inevitable as a result of natural processes of sedimentation. In contrast, the difference in elevation between the Mkuze River and the basin into which it was diverted via the Mpempe Canal was small as is discharge of the Mkuze River in this part of the wetland. Thus, the diversion was unsuccessful. The presence of hippos that create hydraulically efficient pathways that are oriented parallel to the regional hydraulic slope, may accelerate avulsion in large African wetlands. Overall, it is argued that the environmental consequences of excavation need to be viewed against the background that wetlands are dynamic features within the landscape.  相似文献   

12.
ABSTRACT: In urbanizing areas, the usual increase in flood flows also increases erosional capability of streams. In order to evaluate such tendencies quantitatively, 25 stream reaches were studied, and were classified as to whether erosion of the channel and banks was light, medium, or heavy. Analysis of characteristics indicated that (1) densely developed areas are correlated with greater erosion, (2) wide stream buffers of natural vegetation are correlated with lesser erosion, and (3) there is no definite correlation of erosion to slope or characteristics of soil. Erosional stream instability can be avoided by retention of storm water runoff, creating additional channel roughness or reducing channel slope during floods by drop structures, such as culverts, which restrict flow. Channel straightening and general bank protection should be minimized in such streams. Design of culverts should take such effects into consideration.  相似文献   

13.
We examined the relationship between water quality and fish communities within two agricultural areas using a computer simulation model. Our analyses focused on a coolwater stream, Wells Creek in southeastern Minnesota, and a warmwater stream, the Chippewa River in western Minnesota. We used the Agricultural Drainage and Pesticide Transport (ADAPT) model in relation to land use to calculate instream suspended sediment concentrations using estimates of sediment delivery, runoff, baseflow and streambank erosion, and quantified the effects of suspended sediment exposure on fish communities. We predicted the effects of agricultural practices on stream fish communities under several possible land use scenarios, with reference to current conditions. Land use changes led to reductions in sediment loading of up to 84% in Wells Creek and 49% in the Chippewa River. The reduction in sediment loading across scenarios may be directly related to a reduction in runoff by about 35% in both study areas. We found a 98% decrease in lethal concentrations of suspended sediment on fish in Wells Creek with an increase in conservation tillage, riparian buffers, and permanent vegetative cover. However, the effects of suspended sediment did not significantly decrease in the Chippewa River. This difference between study areas was likely due to differences in tolerance to suspended sediment between coolwater and warmwater fish communities and differences in topography, runoff and bank erosion between the two streams. The Minnesota Cooperative Fish and Wildlife Research Unit is jointly sponsored by the US Geological Survey, the University of Minnesota, the Minnesota Department of Natural Resources, and the Wildlife Management Institute.  相似文献   

14.
15.
Sediment and phosphorus (P) transport from the Minnesota River Basin to Lake Pepin on the upper Mississippi River has garnered much attention in recent years. However, there is lack of data on the extent of sediment and P contributions from riverbanks vis-à-vis uplands and ravines. Using two light detection and ranging (lidar) data sets taken in 2005 and 2009, a study was undertaken to quantify sediment and associated P losses from riverbanks in Blue Earth County, Minnesota. Volume change in river valleys as a result of bank erosion amounted to 1.71 million m over 4 yr. Volume change closely followed the trend: the Blue Earth River > the Minnesota River at the county's northern edge > the Le Sueur River > the Maple River > the Watonwan River > the Big Cobb River > Perch Creek > Little Cobb River. Using fine sediment content (silt + clay) and bulk density of 37 bank samples representing three parent materials, we estimate bank erosion contributions of 48 to 79% of the measured total suspended solids at the mouth of the Blue Earth and the Le Sueur rivers. Corresponding soluble P and total P contributions ranged from 0.13 to 0.20% and 40 to 49%, respectively. Although tall banks (>3 m high) accounted for 33% of the total length and 63% of the total area, they accounted for 75% of the volume change in river valleys. We conclude that multitemporal lidar data sets are useful in estimating bank erosion and associated P contributions over large scales, and for riverbanks that are not readily accessible for conventional surveying equipment.  相似文献   

16.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

17.
ABSTRACT: The tailwater of Bridgewater Dam, below Lake James, North Carolina, is a designated trout stream. It has environmental attributes for a good cold water fishery with the exception of high suspended sediments. Muddy Creek, a tributary about 1.5 km downstream of the dam, is a major source of sediments. The Muddy Creek Watershed Restoration Initiative was established to develop and implement a sediment control plan. The Watershed Analysis Risk Management Framework was applied to simulate soil erosion and sedimentation and to help determine appropriate action. The simulated sediment concentrations of the river were comparable to observed data from November 1994 to November 2001. For the base condition, the sediment load was 135,000 kg/d from surface erosion and 1,300,000 kg/d from bank erosion. Increasing the buffer strip from existing 50 to 80 percent to 100 percent of stream segments would only reduce surface erosion to 70,400 kg/d with little change in sediment concentrations. Eliminating riverbank erosion would reduce the sediment load from 920,000 to 87,700 kg/d. The bank stabilization project would not only lower suspended sediment concentrations for Muddy Creek, but also reduce the lake sediment accumulation in the downstream Lake Rhodhiss by approximately 13 percent.  相似文献   

18.
Accelerated streambank erosion caused by channel instability can be the leading cause of sediment impairment of streams. Obtaining accurate streambank erosion rates for sediment budgeting and prioritizing mitigation efforts can be difficult and costly. One approach to quantifying streambank erosion rates is through the development and implementation of an empirically derived “Bank Assessment for Non‐point Source Consequences of Sediment” (BANCS) model. This study aims to improve the BANCS model application by evaluating repeatability between users and identifying sensitive and/or uncertain model inputs. Statistical analysis of streambank evaluations conducted by 10 different individuals suggests the implementation of the BANCS model may not be repeatable. This finding may be due to sensitive model inputs, such as streambank height and near‐bank stress level prediction method selection, and/or uncertain model inputs, such as bank material identification and the associated adjustment of erosion potential. Furthermore, it was found assessing streambanks as a group by obtaining a measure of central tendency from individual evaluations, as well as obtaining a higher level of training, may improve model implementation precision. Application of these suggestions may result in improved prediction of streambank erosion rates utilizing the BANCS model methodology.  相似文献   

19.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

20.
Abstract: Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine‐grained sediments emanating from upland and channel sources. The overall objective of the research reported here was to determine the amount of fine sediment delivered to Lake Tahoe from each of the 63 contributing watersheds. The research described in this report used combinations of field‐based observations of channel and bank stability with measured and simulated data on fine‐sediment loadings to estimate fine‐sediment loadings from unmonitored basins throughout the Lake Tahoe Basin. Loadings were expressed in the conventional format of mass per unit time but also in the number of particles finer than 20 μm, the latter for future use in a lake‐clarity model. The greatest contributors of fine sediment happened to be those with measured data, not requiring extrapolation. In descending order, they are as follows: Upper Truckee River [1,010 tonnes per year (T/year)], Blackwood Creek (846 T/year), Trout Creek (462 T/year), and Ward Creek (412 T/year). Summing estimated values from the contributing watersheds provided an average, annual estimate of fine‐sediment (<0.063 mm) loadings to the lake of 5,206 T/year. A total of 7.79E + 19 particles in the 5‐20 μm fraction were calculated to enter Lake Tahoe in an average year with the Upper Truckee River accounting for almost 25% of the total. Contributions from Blackwood, Ward, Trout, and Third creeks account for another 23% of these very fine particles. Thus, these five streams making up about 40% of the basin area, account for almost 50% of all fine‐sediment loadings to the lake. Contribution of fine sediment from streambank erosion were estimated by developing empirical relations between measured or simulated bank‐erosion rates with a field‐based measure of the extent of bank instability along given streams. An average, annual fine‐sediment loading from streambank erosion of 1,305 T/year was calculated. This represents about 25% of the average, annual fine‐sediment load delivered to the lake from all sources. The two largest contributors, the Upper Truckee River (639 T/year) and Blackwood Creek (431 T/year), account for slightly more than 80% of all fines emanating from streambanks, representing about 20% of the fine sediment delivered to Lake Tahoe from all sources. Extrapolations of fine‐sediment loadings to the unmonitored watersheds are based on documented empirical relations, yet contain a significant amount of uncertainty. Except for those values derived directly from measured data, reported results should be considered as estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号