共查询到20条相似文献,搜索用时 15 毫秒
1.
Ching‐pin Tung 《Journal of the American Water Resources Association》2001,37(1):167-176
ABSTRACT: This study presents a methodology to evaluate the vulnerability of water resources in the Tsengwen creek watershed, Taiwan. Tsengwen reservoir, located in the Tsengwen creek watershed, is a multipurpose reservoir with a primary function to supply water for the ChiaNan Irrigation District. A simulation procedure was developed to evaluate the impacts of climate change on the water resources system. The simulation procedure includes a streamflow model, a weather generation model, a sequent peak algorithm, and a risk assessment process. Three climate change scenarios were constructed based on the predictions of three General Circulation Models (CCCM, GFDL, and GISS). The impacts of climate change on streamflows were simulated, and, for each climate change scenario, the agricultural water demand was adjusted based on the change of potential evapotranspiration. Simulation results indicated that the climate change may increase the annual and seasonal streamflows in the Tsengwen creek watershed. The increase in streamflows during wet periods may result in serious flooding. In addition, despite the increase in streamflows, the risk of water deficit may still increase from between 4 and 7 percent to between 7 and 13 percent due to higher agricultural water demand. The simulation results suggest that the reservoir capacity may need to be expanded. In response to the climate change, four strategies are suggested: (1) strengthen flood mitigation measures, (2) enhance drought protection strategies, (3) develop new water resources technology, and (4) educate the public. 相似文献
2.
Gregory J. McCabe Mark A. Ayers 《Journal of the American Water Resources Association》1989,25(6):1231-1242
ABSTRACT: The Thornthwaite water balance and combinations of temperature and precipitation changes representing climate change were used to estimate changes in seasonal soil-moisture and runoff in the Delaware River basin. Winter warming may cause a greater proportion of precipitation in the northern part of the basin to fall as rain, which may increase winter runoff and decrease spring and summer runoff. Estimates of total annual runoff indicate that a 5 percent increase in precipitation would be needed to counteract runoff decreases resulting from a warming of 2°C; a 15 percent increase for a warming of 4°C. A warming of 2° to 4°C, without precipitation increases, may cause a 9 to 25 percent decrease in runoff. The general circulation model derived changes in annual runoff ranged from ?39 to +9 percent. Results generally agree with those obtained in studies elsewhere. The changes in runoff agree in direction but differ in magnitude. In this humid temperate climate, where precipitation is evenly distributed over the year, decreases in snow accumulation in the northern part of the basin and increases in evapotranspiration throughout the basin could change the timing of runoff and significantly reduce total annual water availability unless precipitation were to increase concurrently. 相似文献
3.
Alex Pupacko 《Journal of the American Water Resources Association》1993,29(2):283-290
ABSTRACT: Historical records of streamflow for an eastward- and a westward-draining stream in the northern Sierra Nevada have been analyzed for evidence of changes in runoff characteristics and patterns of variability. A trend of increasing and more variable winter streamflow began in the mid-1960s. Mean monthly streaniflow during December through March was substantially greater for water years 1965–1990 compared to water years 1939–1964. Increased winter and early-spring streamflow during the later period is attributed to small increases in temperature, which increase the rain-to-snow ratio at lower altitudes and cause the snowpack to melt earlier in the season at higher altitudes. The timing of snowmelt runoff on the western slope of the Sierra Nevada is more sensitive than it is on the eastern slope to changes in temperature, owing to predominantly lower altitudes on the west side. This difference in sensitivity suggests that basins on the east side of the Sierra Nevada have a more reliable water supply (as snow storage) than western-slope basins during warming trends. 相似文献
4.
Kenneth M. Strzepek David C. Major Cynthia Rosenzweig Ana Iglesias David N. Yates Alyssa Holt Daniel Hillel 《Journal of the American Water Resources Association》1999,35(6):1639-1655
ABSTRACT: This paper reports on new methods of linking climate change scenarios with hydrologic, agricultural an water planning models to study future water availability for agriculture, an essential element of sustainability. The study is based on the integration of models of water supply and demand, and of crop growth and irrigation management. Consistent modeling assumptions, available databases, and scenario simulations are used to capture a range of possible future conditions. The linked models include WATBAL for water supply; CERES, SOYGRO, and CROPWAT for crop and irrigation modeling; and WEAP for water demand forecasting, planning and evaluation. These models are applied to the U.S. Cornbelt using forecasts of climate change, agricultural production, population and GDP growth. Results suggest that, at least in the near term, the relative abundance of water for agriculture can be maintained under climate change conditions. However, increased water demands from urban growth, increases in reservoir evaporation and increases in crop consumptive use must be accommodated by timely improvements in crop, irrigation and drainage technology, water management, and institutions. These improvements are likely to require substantial resources and expertise. In the highly irrigated basins of the region, irrigation demand greatly exceeds industrial and municipal demands. When improvements in irrigation efficiency are tested, these basins respond by reducing demand and lessening environmental stress with an improvement in system reliability, effects particularly evident under a high technology scenario. Rain-fed lands in the Cornbelt are not forced to invest in irrigation, but there is some concern about increased water-logging during the spring and consequent required increased investment in agricultural drainage. One major water region in the Cornbelt also provides a useful caveat: change will not necessarily be continuous and monotonic. Under one GCM scenario for the 2010s, the region shows a significant decrease in system reliability, while the scenario for the 2020s shows an increase. 相似文献
5.
Judy L. Meyer Michael J. Sale Patrick J. Mulholland N. LeRoy Poff 《Journal of the American Water Resources Association》1999,35(6):1373-1386
ABSTRACT: We review published analyses of the effects of climate change on goods and services provided by freshwater ecosystems in the United States. Climate-induced changes must be assessed in the context of massive anthropogenic changes in water quantity and quality resulting from altered patterns of land use, water withdrawal, and species invasions; these may dwarf or exacerbate climate-induced changes. Water to meet instream needs is competing with other uses of water, and that competition is likely to be increased by climate change. We review recent predictions of the impacts of climate change on aquatic ecosystems in eight regions of North America. Impacts include warmer temperatures that alter lake mixing regimes and availability of fish habitat; changed magnitude and seasonality of runoff regimes that alter nutrient loading and limit habitat availability at low flow; and loss of prairie pothole wetlands that reduces waterfowl populations. Many of the predicted changes in aquatic ecosystems are a consequence of climatic effects on terrestrial ecosystems; shifts in riparian vegetation and hydrology are particularly critical. We review models that could be used to explore potential effects of climate change on freshwater ecosystems; these include models of instream flow, bioenergetics models, nutrient spiraling models, and models relating riverine food webs to hydrologic regime. We discuss potential ecological risks, benefits, and costs of climate change and identify information needs and model improvements that are required to improve our ability to predict and identify climate change impacts and to evaluate management options. 相似文献
6.
Dennis Ojima Luis Garcia E. Elgaali Kathleen Miller Timothy G. F. Kittel Jill Lackett 《Journal of the American Water Resources Association》1999,35(6):1443-1454
ABSTRACT: This paper reports on the current assessment of climate impacts on water resources, including aquatic ecosystems, agricultural demands, and water management, in the U.S. Great Plains. Climate change in the region may have profound effects on agricultural users, aquatic ecosystems, and urban and industrial users alike. In the central Great Plains Region, the potential impacts of climate changes include changes in winter snowfall and snow-melt, growing season rainfall amounts and intensities, minimum winter temperature, and summer time average temperature. Specifically, results from general circulation models indicate that both annual average temperatures and total annual precipitation will increase over the region. However, the seasonal patterns are not uniform. The combined effect of these changes in weather patterns and average seasonal climate will affect numerous sectors critical to the economic, social and ecological welfare of this region. Research is needed to better address the current competition among the water needs of agriculture, urban and industrial uses, and natural ecosystems, and then to look at potential changes. These diverse demands on water needs in this region compound the difficulty in managing water use and projecting the impact of climate changes among the various critical sectors in this region. 相似文献
7.
Kenneth D. Frederick Gregory E. Schwarz 《Journal of the American Water Resources Association》1999,35(6):1563-1583
ABSTRACT: A greenhouse warming would have major effects on water supplies and demands. A framework for examining the socioeconomic impacts associated with changes in the long-term availability of water is developed and applied to the hydrologic implications of the Canadian and British Hadley2 general circulation models (GCMs) for the 18 water resource regions in the conterminous United States. The climate projections of these two GCMs have very different implications for future water supplies and costs. The Canadian model suggests most of the nation would be much drier in the year 2030. Under the least-cost management scenario the drier climate could add nearly $105 billion to the estimated costs of balancing supplies and demands relative to the costs without climate change. Measures to protect instream flows and irrigation could result in significantly higher costs. In contrast, projections based on the Hadley model suggest water supplies would increase throughout much of the nation, reducing the costs of balancing water supplies with demands relative to the no-climate-change case. 相似文献
8.
J. Wayland Eheart Amy J. Wildermuth Edwin E. Herricks 《Journal of the American Water Resources Association》1999,35(6):1365-1372
ABSTRACT: This paper addresses the possible impacts of global climate change on low streamflows in the Midwest, both directly, through lower precipitation, and indirectly, by rendering irrigation profitable in areas where it has found little application in the past. In the analysis presented here, streamflow data are altered to represent the effect of climate change and stream-supplied irrigation, and then used to estimate new values for two low-flow criteria, the one- and seven-day-ten-year low flows (7Q10 and 1Q10) under 20 climate change and irrigation scenarios. Additionally, the frequencies of violation of these two criteria, and multiple violations in a three-year period, are determined. Results show that the potential impact of the assumed climate change scenarios on low flow standards is substantial. A 25 percent decrease in mean precipitation results in a 63 percent reduction in design flow, even in the absence of irrigation. With irrigation, the reduction can be as much as 100 percent. The frequency of single violations of low flow criteria is found to increase several fold with irrigation. The frequency of multiple violations of low flow criteria in a three-year period is sensitive to climate change, increasing from around 20 percent to nearly 100 percent as the climate change becomes more severe. 相似文献
9.
Heejun Chang Barry M. Evans David R. Easterling 《Journal of the American Water Resources Association》2001,37(4):973-985
ABSTRACT: This study assesses the potential impact of climate change on stream flow and nutrient loading in six watersheds of the Susquehanna River Basin using the Generalized Watershed Loading Function (GWLF). The model was used to simulate changes in stream flow and nutrient loads under a transient climate change scenario for each watershed. Under an assumption of no change in land cover and land management, the model was used to predict monthly changes in stream flow and nutrient loads for future climate conditions. Mean annual stream flow and nutrient loads increased for most watersheds, but decreased in one watershed that was intensively cultivated. Nutrient loading slightly decreased in April and late summer for several watersheds as a result of early snowmelt and increasing evapotranspiration. Spatial and temporal variability of stream flow and nutrient loads under the transient climate scenario indicates that different approaches for future water resource management may be useful. 相似文献
10.
Philip Chao 《Journal of the American Water Resources Association》1999,35(6):1499-1507
ABSTRACT: The U.S. Army Corps of Engineers conducted an assessment of Great Lakes water resources impacts under transient climate change scenarios. The integrated model linked empirical regional climate downscaling, hydrologic and hydraulic models, and water resource use sub-models. The water resource uses include hydropower, navigation, shoreline damages, and wetland area. The study is unique in that both steady-state 2°CO2 and transient global circulation model (GCM) scenarios were used and compared to each other. The results are consistent with other impact studies in that high scatter in regional climate among the GCM scenarios lead to high uncertainty in impacts. Nevertheless, the transient scenarios show that in the near-term (approximately 20 years) significant changes could occur. This result only adds to the urgency of creating more flexible and robust management of water resources uses. 相似文献
11.
Reginald Blake Reza Khanbilvardi Cynthia Rosenzweig 《Journal of the American Water Resources Association》2000,36(2):279-292
ABSTRACT: It has been well established that the greenhouse gas loading of the atmosphere has been increasing since the mid 19th century. Consequently, shifts in the earth's radiative balance are expected with accompanying alterations to the earth's climate. With these anticipated, and perhaps already observable, changes in both global and regional climate, managers of regional water resources seek insight to the possible impacts climate change may have on their present and future water supplies. The types and degrees of impacts that climate change may have on New York City's water supply system were assessed in a study of a watershed at Allaben, New York. Hypothetical scenarios of future climate and climate change projections from three General Circulation Models (GCMs) were used in conjunction with the WatBal hydrological model and the Palmer Drought Severity Index (PDSI) to ascertain how runoff and soil moisture from this watershed may change in a warmer climate. For the worst case predictions, the results indicate that within the century of the 2000s, the watershed's air temperature may increase up to about 11°F, while its precipitation and runoff may decrease by about 13 and 30 percent, respectively. If this watershed is typical of the others within the New York City water supply system, the system's managers should consider implementing mitigation and adaptation strategies in preparation for the worst of these possible future conditions. 相似文献
12.
Bruce P. Hayden 《Journal of the American Water Resources Association》1999,35(6):1387-1397
ABSTRACT: Climate change due to enrichment of the atmosphere with carbon dioxide is projected to change the circulation of the atmosphere, increase its moisture content, warm the surface layers, and increase precipitation. Extratropical storms are the intermediate agent in mid-latitudes between changes in the circulation of the atmosphere and surface water resources. The climatology of extratropical storms for the period 1885–1996 is presented, and major changes in storminess are detected across much of North America. General Circulation Model (GCM) projections of storm frequency and storm track are found to have little in common with the observed pattern of storms and evidence no systematic changes in response to an enrichment of the atmosphere with carbon dioxide. 相似文献
13.
Robert E. O'Connor Brent Yarnal Rob Neff Richard Bord Nancy Wiefek Christopher Reenock Robin Shudak Christine L. Jocoy Peter Pascals C. Gregory Knight 《Journal of the American Water Resources Association》1999,35(6):1411-1419
ABSTRACT: This research examines the sensitivity and vulnerability of community water systems (CWSs) to weather and climate in the Pennsylvania portion of the Susquehanna River Basin. Three key findings emerge from a survey of 506 CWS managers. First, CWSs are sensitive to extreme weather and climate, but that sensitivity is determined more by type of system than system size. CWSs that rely partly or wholly on surface water face more disruptions than do groundwater systems. Larger systems have more problems with flooding, and size is not a significant determinant of outages from storms or disruptions from droughts. Second, CWS managers are unsure about global warming. Few managers dismiss global warming; most think global warming could be a problem but are unwilling to consider it in their planning activities until greater scientific certainty exists. Third, the nature of the CWS, its sensitivity to weather and climate, and projected risks from weather and climate are insignificant determinants of how managers plan. Experienced, full-time managers are more likely to consider future weather and climate scenarios in their planning, while inexperienced and part-time managers are less likely to do so. Implications of these findings include support for efforts to move away from surface water, for clear communication of climate change information, and for the hiring and retention of full-time professional CWS managers. 相似文献
14.
Lowell F W. Duell 《Journal of the American Water Resources Association》1994,30(5):841-859
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River. 相似文献
15.
Susan Seacrest Robert Kuzelka Rick Leonard 《Journal of the American Water Resources Association》2000,36(2):253-263
ABSTRACT: Global climate change is examined from the perspective of its relevancy and urgency as a public policy issue. Interpreting from literature specific to investigations into public awareness and concern, climate change is seen as a legitimate though less than urgent issue. The literature reveals that the general public holds surprising misconceptions about the processes contributing to climate change, including failure to grasp the fundamental connection to CO2. General ambivalence is also suggested from the results of two surveys conducted by The Groundwater Foundation. They first asked participants in a recent Groundwater Guardian Conference to rate levels of discussion and concern for water resources implications in the participants' communities. A second survey polled national water resource organizations about the extent climate change has been a focus of their educational, investigative, or advocacy efforts. The paper concludes by describing basic barriers to stimulating public response to climate change, which education about the issue should address, and by offering a model to educate and involve citizens based on the Groundwater Guardian program developed by the The Groundwater Foundation. 相似文献
16.
Gregory J. McCabe David M. Wolock 《Journal of the American Water Resources Association》1992,28(3):535-543
ABSTRACT: An irrigation model based on a modified Thornthwaite water balance was used to simulate the effects of various hypothetical climatic changes on annual irrigation demand in a humidtemperate climate. The climatic-change scenarios consisted of combinations of changes in temperature, precipitation, and stomatal resistance of plants to transpiration. The objectives were to (1) examine the effects of long-term changes in these components of climatic change on annual irrigation demand, and (2) identify which of these factors would cause the largest changes in annual irrigation demand. Hypothetical climatic changes that only included increases in temperature and changes in precipitation resulted in increased annual irrigation demand, even with a 20 percent increase in precipitation. The model results showed that, for the ranges of changes in temperature and precipitation used in this study, changes in irrigation demand were more sensitive to changes in temperature than to changes in precipitation. Model results also indicated that increased stomatal resistance to transpiration counteracted the effects of increases in temperature and decreases in precipitation on irrigation demand. Changes in irrigation demand were even more sensitive to changes in stomatal resistance than to changes in temperature. A large amount of uncertainty is associated with predictions of future climatic conditions; however, uncertainty associated with natural climatic variability may be larger and may mask the effects of climatic change on irrigation demand. 相似文献
17.
Lara C. Whitely Binder 《Journal of the American Water Resources Association》2006,42(4):915-926
ABSTRACT: This paper draws on interviews with Washington State Watershed Planning Leads (Planning Leads) and interactions with local watershed planning units to identify factors that may influence the inclusion of climate change in watershed planning efforts in Washington State. These factors include the interest of individual planning unit members in climate change; Planning Lead familiarity with climate impacts; the influence of trust, leadership, and “genetic knowledge” on planning units; and perceptions of strategic gain. The research also identifies aspects of the planning process that may create opportunities for addressing climate impacts in future planning. These aspects include continuation of watershed planning units after plans are developed; commitment to updating watershed plans; recognition of climate impacts in planning documentation; dedicated incentive funding; and the availability of hydrologic modeling tools for assessing hydrologic impacts. Additional types of technical assistance that could support integration of climate impacts are also identified. It is hoped that the insight provided by this analysis will help individuals involved in stakeholder‐based watershed planning recognize the various dynamics potentially affecting the inclusion of climate change in watershed planning and in doing so, contribute to the development of planning approaches and tools that will support local efforts to adapt to climate impacts. 相似文献
18.
Thomas E. Croley Carol L. Luukkonen 《Journal of the American Water Resources Association》2003,39(1):149-163
ABSTRACT: Computer simulations involving general circulation models, a hydrologic modeling system, and a ground water flow model indicate potential impacts of selected climate change projections on ground water levels in the Lansing, Michigan, area. General circulation models developed by the Canadian Climate Centre and the Hadley Centre generated meteorology estimates for 1961 through 1990 (as a reference condition) and for the 20 years centered on 2030 (as a changed climate condition). Using these meteorology estimates, the Great Lakes Environmental Research Laboratory's hydrologic modeling system produced corresponding period streamflow simulations. Ground water recharge was estimated from the streamflow simulations and from variables derived from the general circulation models. The U.S. Geological Survey developed a numerical ground water flow model of the Saginaw and glacial aquifers in the Tri‐County region surrounding Lansing, Michigan. Model simulations, using the ground water recharge estimates, indicate changes in ground water levels. Within the Lansing area, simulated ground water levels in the Saginaw aquifer declined under the Canadian predictions and increased under the Hadley. 相似文献
19.
Lisa H. Chang Carolyn T. Hunsaker John D. Draves 《Journal of the American Water Resources Association》1992,28(2):273-286
ABSTRACT: Concentrations of atmospheric CO2 and other radiatively active trace gases have risen since the Industrial Revolution. Such atmospheric modifications can alter the global climate and hydrologic cycle, in turn affecting water resources. The clear physical and biological sensitivities of water resources to climate, the indication that climate change may be occurring, and the substantial social and economic dependencies on water resources have instigated considerable research activity in the area of potential water resource impacts. We discuss how the literature on climate change and water resources responds to three basic research needs: (1) a need for water managers to clearly describe the climatic and hydrologic statistics and characteristics needed to estimate climatic impacts on water resources, (2) a need to estimate the impacts of climate change on water resources, and (3) a need to evaluate standard water management and planning methods to determine if uncertainty regarding fundamental assumptions (e.g., hydrologic stationarity) implies that these methods should be revised. The climatic and hydrologic information needs for water resource managers can be found in a number of sources. A proliferation of impact assessments use a variety of methods for generating climate scenarios, and apply both modeling approaches and historical analyses of past responses to climate fluctuations for revealing resource or system sensitivities to climate changes. Traditional techniques of water resources planning and management have been examined, yielding, for example, suggestions for new methods for incorporating climate information in real-time water management. 相似文献
20.
Michael D. Stonefelt Thomas A. Fontaine Rollin H. Hotchkiss 《Journal of the American Water Resources Association》2000,36(2):321-336
ABSTRACT: The potential impacts of climate change on water yield are examined in the Upper Wind River Basin. This is a high‐elevation, mountain basin with a snowfall/snowmelt dominated stream‐flow hydrograph. A variety of physiographic conditions are represented in the rangeland, coniferous forests, and high‐elevation alpine regions. The Soil Water Assessment Tool (SWAT) is used to model the baseline input time series data and climate change scenarios. Five hydroclimatic variables (temperature, precipitation, CO2, radiation, and humidity) are examined using sensitivity tests of individual and coupled variables with a constant change and coupled variables with a monthly change. Results indicate that the most influential variable on annual water yield is precipitation; and, the most influential variable on the timing of streamflow is temperature. Carbon dioxide, radiation, and humidity each noticeably impact water yield, but less significantly. The coupled variable analyses represent a more realistic climate change regime and reflect the combined response of the basin to each variable; for example, increased temperature offsets the effects of increased precipitation and magnifies the effects of decreased precipitation. This paper shows that the hydrologic response to climate change depends largely on the hydroclimatic variables examined and that each variable has a unique effect (e.g., magnitude, timing) on water yield. 相似文献