首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Using a genetic algorithm (GA), optimal intermittent pumping schedules were established to simulate pump‐and‐treat remediation of a contaminated aquifer with known hydraulic limitations and a water miscible contaminant, located within the Duke Forest in Durham, North Carolina. The objectives of the optimization model were to minimize total costs, minimize health risks, and maximize the amount of contaminant removed from the aquifer. Stochastic ground water and contaminant transport models were required to provide estimates of contaminant concentrations at pumping wells. Optimization model simulations defined a tradeoff curve between the pumping cost and the amount of contaminant extracted from the aquifer. For this specific aquifer/miscible contaminant combination, the model simulations indicated that pump‐and‐treat remediation using intermittent pumping schedules for each pumping well produced significant reductions in predicted contaminant concentrations and associated health risks at a reasonable cost, after a remediation time of two years.  相似文献   

2.
ABSTRACT: While most inquiries into improving the efficiency of ground water allocation have focused upon various schemes involving centralized management, recently the focus has shifted towards exploring private property solutions to these problems. However, most of these studies, when modeling ground water use, have equated behavior under private property to that under common property conditions. This leads to the possibly mistaken conclusion that private property rights do not promote more efficient ground water use, because these models assume that producers ignore the future effects of current pumping. This paper attempts to correct this deficiency by formally modeling ground water use under common property, central management, and private property scenarios. Moreover, there are many ways that property rights can be defined over ground water, some establishing more exclusivity over the resource than others. Four specifications of property rights are analyzed for their likely effects on allocative efficiency: full stock-flow, partial stock-flow, limited stock-flow, and pure flow rights.  相似文献   

3.
ABSTRACT: The equations of transient and steady-state flow in two-dimensional artesian aquifers are approximated using finite differences. The resulting linear difference equations, combined with other linear physical and management constraints and a linear objective function, comprise a linear programming (LP) formulation. Solutions of such LP models are used to determine optimal well distributions and pumping rates to meet given management objectives for a hypothetical transient problem and for a steady-state field problem.  相似文献   

4.
ABSTRACT: Considerable advancements have been made in the development of analytical solutions for predicting the effects of pumping wells on adjacent streams and rivers. However, these solutions have not been sufficiently evaluated against field data. The objective of this research is to evaluate the predictive performance of recently proposed analytical solutions for unsteady stream depletion using field data collected during a stream/aquifer analysis test at the Tamarack State Wildlife Area in eastern Colorado. Two primary stream/aquifer interactions exist at the Tamarack site: (1) between the South Platte River and the alluvial aquifer and (2) between a backwater stream and the alluvial aquifer. A pumping test is performed next to the backwater stream channel. Drawdown measured in observation wells is matched to predictions by recently proposed analytical solutions to derive estimates of aquifer and streambed parameters. These estimates are compared to documented aquifer properties and field measured streambed conductivity. The analytical solutions are capable of estimating reasonable values of both aquifer and streambed parameters with one solution capable of simultaneously estimating delayed aquifer yield and stream flow recharge. However, for long term water management, it is reasonable to use simplified analytical solutions not concerned with early‐time delayed yield effects. For this site, changes in the water level in the stream during the test and a varying water level profile at the beginning of the pumping test influence the application of the analytical solutions.  相似文献   

5.
ABSTRACT: Numerical simulation of ground water solute transport is combined with linear programming to optimize waste disposal. A discretized form of the equation governing solute transport is included as a set of constraints in a linear program. Two problems are described. First, the management model is used to maximize ground water waste disposal. The model constrains disposal activities so that the quality of local ground water supplies is protected. Parametric programming is shown to be important in evaluating waste disposal tradeoffs at the various facilities. Changes in the velocity field induced by waste water injection cause a nonlinearity in the solute transport equation which is dealt with by employing an iterative procedure. The second problem is aimed at identifying all sites which are suitable for waste disposal in the subsurface. The management model is manipulated so that the optimal value of the dual variables are “unit source impact indicators.” This physical interpretation is valuable in identifying feasible disposal sites. The joint simulation and optimization approach permits the management of complex ground water systems where the aquifer is used simultaneously for waste disposal and water supply.  相似文献   

6.
ABSTRACT: An inverse‐simulation approach is used to determine optimal strategies for developing public water‐supply systems in a shallow, coastal aquifer on the outermost arm of the Cape Cod peninsula in Massachusetts. Typically a forward simulation (or “trial and error”) approach is used to find best pumping strategies, but the chances of finding success with this tact diminish as the number of potential options grows large. Well locations and pumping rates are optimized with respect to: (1) providing sufficient water to areas of water‐quality impairment, (2) minimizing impacts to nearby surface waters, (3) preventing saltwater contamination due to overpumping, and (4) minimizing financial cost of well development. Potential well sites and water‐supply scenarios are separated into “politically‐based” and “resource‐based” categories to gain insight into the degree that pre‐existing political boundaries hinder best management practices. The approach provides a promising tool in transboundary water‐resources settings because it allows stakeholders to find solutions that best meet everyone's goals, as opposed to pursuing options that will create conflict, or are less than optimal.  相似文献   

7.
ABSTRACT: This study investigates the degree of economic inefficiency of the current institutional arrangements for surface and ground water management in meeting urban water demand in the Jakarta region. A numerical model of integrated surface and ground water management is developed using GAMS (General Algebraic Modelling System) software. The model maximizes the net present value of social benefits from piped water and ground water consumption across all users over time from 1999 to 2025. Four policy scenarios are examined: the status quo, the social planner's solution, and two ground water pumping quota scenarios: an aggregate ground water pumping quota and a partial quota applied to commercial and industrial users. Three variations in each policy scenario are considered: investment in water infrastructure of the Jakarta water enterprise (PAM Jaya), water demand growth, and discount rates. The status quo, depending on the investment option, the growth of water demand, and the discount rate, results in a 7.4 to 47.8 percent loss in economic efficiency relative to the social planner's solution. The partial quota is the most feasible, applicable, and manageable scenario. The optimal investment option could increase the volume of piped water supply and reduce the cost of water production. The volume of water delivery could increase by up to 156 percent, but it implies only a 35 percent increase in the surface raw water demands above the current level. However, it does not significantly reduce cumulative ground water extraction over the time period considered.  相似文献   

8.
ABSTRACT: Artificial recharge as a means of augmenting water sup plies for irrigation is a management alternative which policy makers in ground water decline areas are beginning to consider seriously. A conceptual model is developed to evaluate the economic benefits from ground water recharge under conditions where the major water use is irrigation. The methodology presented separates recharge benefits into two components: pumping cost savings and aquifer extension benefits. This model is then applied to a Nebraska case to approximate the value of recharge benefits as a function of aquifer response. discount rate, and commodity prices. It was found that recharge benefits vary from less than $2 to over $6 an acre foot recharged.  相似文献   

9.
ABSTRACT: Interpretation of ground water level changes in a developed aquifer usually relies on reference to some benchmark such as “predevelopment” ground water levels, changes from fall to fall and/or spring to spring, or to determination of maximum stress during the pumping season. The assumption is that ground water levels measured in the monitoring well accurately reflect the state of the ground water resource in terms of quantity in storage and the effects of local pumping. This assumption is questionable based on the patterns shown in continuous hydrographs of water levels in monitoring wells in Nebraska, and wells installed to determine vertical gradients. These hydrographs show clear evidence for vertical ground water gradients and recharge from overlying parts of the aquifer system to deeper zones in which production wells are screened. The classical concept of semi‐perched ground water, as described by Meinzer, is demonstrated by these hydrographs. The presence of semi‐perched ground water (Meinzer definition, there is no intervening unsaturated zone) invalidates the use of measured ground water levels in regional observation programs for detailed numerical management of the resource. Failure to recognize the Meinzer effect has led to faulty management. The best use of data from the observation well network would be for detection of trends and education unless it is clearly understood what is being measured.  相似文献   

10.
ABSTRACT The Las Vegas Valley in southern Nevada has provided ample opportunity for mission oriented water resources research, and, to some extent, application of those research results. Past studies of the ground-water systems have resulted in the construction of a direct electrical analog, two digital simulation models, a Hele-Shaw fluid analog, a linear programming model, and two dynamic programming models. The work accomplished has dealt with the problems of groundwater management, waste water reclamation and artificial recharge, and conjunctive use water management. The current study is attempting to integrate previous results and new work into a detailed and realistic conjunctive use water resource management model to achieve system efficiency under more than one criteria. The research team is interdisciplinary in nature and encompasses the physical and social sciences.  相似文献   

11.
Abstract: As nearly all of Texas’ rural lands are privately owned, landowner associations for the management of white‐tailed deer and ground‐water have become increasingly popular. Deer are a common‐pool resource with transboundary characteristics, requiring landowner cooperation for effective management. Ground‐water reserves are economically important to landowners, but are governed by the “rule of capture” whereby property rights are not defined. One ground‐water association and four wildlife management associations (WMAs) were surveyed to characterize their member demographics, land use priorities, attitudes, and social capital. Members of the ground‐water cooperative were part of a much larger, more heterogeneous, and more recently formed group than members of WMAs. They also placed greater importance on utilitarian aspects of their properties, as opposed to land stewardship for conservation as practiced by members of WMAs. If ground‐water association members could be more locally organized with more frequent meetings, social capital and information sharing may be enhanced and lead to land stewardship practices for improved hydrologic functions and sustained ground‐water supply. This, coupled with pumping rules assigned by the local ground‐water district, could yield an effective strategy that is ecologically and hydrologicaly sound, and that allows rural provision of water supply to urban consumers.  相似文献   

12.
ABSTRACT: This paper synthesizes and interprets data pertaining to the evolution of average water revenue, water use, and the average cost of water supply in the City of Santa Barbara, California, from 1986 to 1996, a period which included one of the most devastating droughts in California this century. The 1987–1992 drought hit the study area particularly hard. The City of Santa Barbara was dependent exclusively on local sources for its water supply. That made it vulnerable as the regional climate is prone to extreme variability and recurrent droughts. The 1986–1992 drought provided a rare opportunity to assess the sensitivity of municipal water use to pricing, conservation, and other water management measures under extreme drought conditions. Our analysis indicates that the average cost of water rose more than three-fold in real terms from 1986 to 1996, while the gap between the average cost of supply and the average revenue per unit of water (= 100 cubic feet) rose in real terms from $0.14 in 1986 to $ 0.75 in 1996. The rise of $3.08 in the average cost of supplying one unit of water between 1986 and 1996 measures the cost of hedging drought risk in the study area. Water use dropped 46 percent at the height of the drought relative to pro-drought water use, and remains at 61 percent of the pre-drought level. The data derived from the 1987–1992 California drought are unique and valuable insofar as shedding light on drought/water demand adaptive interactions. The experience garnered on drought management during that unique period points to the possibilities available for future water management in the Arid West where dwindling water supplies and burgeoning populations are facts that we must deal with.  相似文献   

13.
In urbanizing areas underlain by crystalline rocks an inventory of the usable ground water should form an important element in the land-use planning process. Land-use decisions are most often made upon water-well yield data alone, but these data do not address the inventory question. A method utilizing local geology, stream lowflow characteristics, and pumping test data permitted outlining portions of Wake County, North Carolina, which are more favorable and those which are less favorable for ground water supply development. Information from state-required 24-hour pumping tests on 232 wells was supplemented by information from an additional 100 wells whose initial yields were determined by shorter pumping tests. Comparison of the ground water inventory values on a per acre or per square mile basis with average water use at various residential densities provides information useful to the responsible political body as it decides about population density distribution and the need for surface water supplies. For Wake Country an average density of one residential unit per acre appears generally permissible before overdraft of the ground water supplies becomes a significant risk. By utilizing the ground water inventory and patterns of ground water yields from various rock types, county officials can maximize the effectiveness of public facilities funds. The technique appears useful for other parts of the Piedmont region of the southeastern United States.  相似文献   

14.
The demand for more water is increasing throughout the country. Research on upland watersheds clearly demonstrates that water yield can be increased using forest and range management practices. Based on the experience of the past several decades and a review of six papers in a recent AWRA series on water yield augmentation through vegetation management, the following issues and concerns are discussed: predicting increased yields from large basins; economic evaluation of additional flows; court acceptance and need for system models; the legal question of ownership and transferability of increased yields; and management emphasis on private and federal lands. The immediate potential for water yield augmentation is on carefully selected watersheds that have the bio-physical potential to produce high value water under environmentally acceptable multiple use management. We predict water yield management on a broader scale will result from increased pressures to solve the legal and economic issues involved.  相似文献   

15.
ABSTRACT: Devils Hole is a collapse depression connected to the regional carbonate aquifer of the Death Valley ground water flow system. Devils Hole pool is home to an endangered pupfish that was threatened when irrigation pumping in nearby Ash Meadows lowered the pool stage in the 1960s. Pumping at Ash Meadows ultimately ceased, and the stage recovered until 1988, when it began to decline, a trend that continued until at least 2004. Regional ground water pumping and changes in recharge are considered the principal potential stresses causing long term stage changes. A regression was found between pumpage and Devils Hole water levels. Though precipitation in distant mountain ranges is the source of recharge to the flow system, the stage of Devils Hole shows small change in stage from 1937 to 1963, a period during which ground water withdrawals were small and the major stress on stage would have been recharge. Multiple regression analyses, made by including the cumulative departure from normal precipitation with pumpage as independent variables, did not improve the regression. Drawdown at Devils Hole was calculated by the Theis Equation for nearby pumping centers to incorporate time delay and drawdown attenuation. The Theis drawdowns were used as surrogates for pumpage in multiple regression analyses. The model coefficient for the regression, R2= 0.982, indicated that changes in Devils Hole were largely due to effects of pumping at Ash Meadows, Amargosa Desert, and Army 1.  相似文献   

16.
Abstract: Water right transfers are one of the basic means of implementing changes in water use in the highly appropriated water resource systems of the western United States. Many of these systems are governed by the Prior Appropriation Doctrine, which was not originally intended for application to ground‐water pumping and the conjunctive management of ground water and surface water, and thus creates an administrative challenge. That challenge results from the fact that ground‐water pumping can affect all interconnected surface‐water bodies and the effects may be immeasurably small relative to surface water discharge and greatly attenuated in time. Although we may have the ability to calculate the effects of ground‐water pumping and transfers of pumping location on surface‐water bodies, mitigating for all the impacts of each individual transfer is sufficiently inefficient that it impedes the transfer process, frustrates water users, and consequently inhibits economic development. A more holistic approach to ground‐water right transfers, such as a ground‐water accounting or banking scheme, may adequately control transfer third‐party effects while reducing mitigation requirements on individual transfers. Acceptance of an accounting scheme can accelerate the transfer process, and possibly reduce the administrative burden.  相似文献   

17.
ABSTRACT: This study estimates subsurface return flow and effective ground water recharge in terraced fields in northern Taiwan. Specifically, a three dimensional model, FEMWATER, was applied to simulate percolation and lateral seepage in the terraced fields under various conditions. In the terraced paddy fields, percolation mainly moves vertically downward in the central area, while lateral seepage is mainly focused around the bund. Although the simulated lateral seepage rate through the bund exceeded the percolation rate in the central area of the paddy field, annual subsurface return flow at Pei‐Chi and Shin‐Men was 0.17 × 106 m3 and 0.37 × 106 m3, representing only 0.17 percent and 0.21 percent of the total irrigation water required for rice growth at Pei‐Chi and Shin‐Men, respectively. For upland fields, the effective ground water recharge rate during the second crop period (July to November) exceeded that during the first crop period (January to May) because of the wet season in the second crop period. Terraced paddy fields have the most efficient ground water recharge, with 21.2 to 23.4 percent of irrigation water recharging to ground water, whereas upland fields with a plow layer have the least efficient ground water recharge, with only 4.8 to 6.6 percent of irrigation water recharging to ground water. The simulation results clearly revealed that a substantial amount of irrigation water recharges to ground water in the terraced paddy, while only a small amount of subsurface return flow seeps from the upstream to the downstream terraced paddy. The amounts of subsurface flow and ground water recharge determined in the study are useful for the irrigation water planning and management and provide a scientific basis to reevaluate water resources management in the terrace region under irrigated rice.  相似文献   

18.
ABSTRACT: The importation of water into an existing irrigated agricultural area raises many questions about farm profitability and suggests many adjustment alternatives open to farmers. In particular, how will farmers respond to a new additional water source of differing cost, availability, and quality? Mathematical programming models of representative irrigated farms in Pinal County, Arizona, were developed to project agricultural adjustments to new water from the Central Arizona Project now under construction. The techniques developed have broad application to similar water resource projects involving the conjunctive use of multiple water sources of differing qualities. Regional agricultural activities are described by defining and modeling multiple representative farms which account for economies due to size and different water sources of differing price and quality. Various management schemes can be evaluated by properly selected representative farm models.  相似文献   

19.
The use of linear programming as a planning tool for determining the optimal long-range development of an urban water supply system was explored. A stochastic trace of water demand was synthesized and used as an input to the model. This permitted evaluating the feasibility of imposing demand restrictions as an effective cost reduction mechanism. The City of Lincoln, Nebraska, was used as the urban model. The fundamental problem was to allocate limited water supplies from several sources to an urban load center to minimize costs and comply with system constraints. The study period covered twenty years, and findings indicate the planning direction for stage development during this period. Sensitivity analyses were performed on cost coefficients and demands. Thirteen sources were included in the initial computations. Conclusions were that linear programming and generated demand traces are useful tools for both short- and long-term urban water supply planning. Lowering peak demands results in long-range development of fewer sources of supply and more economic and efficient use of the supplies developed.  相似文献   

20.
ABSTRACT Both because of its effectiveness and ease in use, linear programming has become progressively popular in water resources planning problems. Yet, the assumptions of linear construction costs can be misleading. Diseconomies of scale in construction can be handled by successive approximations to the cost function but problems with economies of scale yield paradoxical results when piecewise approximations are used. If significant economies of scale exist in only one facility, the solution to problems of this nature can be found using normal linear programming codes by successively adjusting the unit construction cost on that single facility to iteratively work toward the true optimal solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号