共查询到20条相似文献,搜索用时 0 毫秒
1.
Stephen J. Gaffield Kenneth W. Potter Lizhu Wang 《Journal of the American Water Resources Association》2005,41(1):25-36
ABSTRACT: One of the biggest challenges in managing cold water streams in the Midwest is understanding how stream temperature is controlled by the complex interactions among meteorologic processes, channel geometry, and ground water inflow. Inflow of cold ground water, shade provided by riparian vegetation, and channel width are the most important factors controlling summer stream temperatures. A simple screening model was used to quantitatively evaluate the importance of these factors and guide management decisions. The model uses an analytical solution to the heat transport equation to predict steady‐state temperature throughout a stream reach. The model matches field data from four streams in southwestern Wisconsin quite well (typically within 1°C) and helps explain the observed warming and cooling trends along each stream reach. The distribution of ground water inflow throughout a stream reach has an important influence on stream temperature, and springs are especially effective at providing thermal refuge for fish. Although simple, this model provides insight into the importance of ground water and the impact different management strategies, such as planting trees to increase shade, may have on summer stream temperature. 相似文献
2.
Mark C. Stone Rollin H. Hotchkiss Carter M. Hubbard Thomas A. Fontaine Linda O. Mearns Jeff G. Arnold 《Journal of the American Water Resources Association》2001,37(5):1119-1129
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis. 相似文献
3.
David M. Wolock Gregory J. McCabe 《Journal of the American Water Resources Association》1999,35(6):1341-1350
ABSTRACT: The effects of potential climate change on mean annual runoff in the conterminous United States (U.S.) are examined using a simple water-balance model and output from two atmospheric general circulation models (GCMs). The two GCMs are from the Canadian Centre for Climate Prediction and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HAD). In general, the CCC GCM climate results in decreases in runoff for the conterminous U.S., and the HAD GCM climate produces increases in runoff. These estimated changes in runoff primarily are the result of estimated changes in precipitation. The changes in mean annual runoff, however, mostly are smaller than the decade-to-decade variability in GCM-based mean annual runoff and errors in GCM-based runoff. The differences in simulated runoff between the two GCMs, together with decade-to-decade variability and errors in GCM-based runoff, cause the estimates of changes in runoff to be uncertain and unreliable. 相似文献
4.
M. L. Shelton 《Journal of the American Water Resources Association》2001,37(4):1041-1052
ABSTRACT: A 2xCO2 climate and runoff in the Upper Deschutes Basin in central Oregon is simulated using a mesoscale atmospheric model and a watershed model that incorporates spatial variability of the runoff process. A nine‐year control climate monthly time series provides a benchmark for assessing changes related to a warmer and wetter 2xCO2 climate. Potential evapotranspiration is increased by 23 percent and snow water equivalent is reduced by 59 percent in the 2xCO2 climate. Annual runoff increases by 23 percent, while November runoff increases by 55 percent. The average maximum monthly runoff is in May for both the control climate and 2xCO2 climate, but in five of the nine years the monthly maximum runoff for the 2xCO2 climate occurs two to five months earlier than for the control climate. The minimum runoff month is one to five months earlier in the 2xCO2 climate in seven of the nine years, and the month of average minimum runoff is March in the control climate and November in the 2xCO2 climate. Since precipitation is greatest in December in both the control climate and 2xCO2 climate, the earlier maximum and minimum runoff for a 2xCO2 climate indicates greater watershed sensitivity to temperature than to precipitation. 相似文献
5.
Rollin H. Hotchkiss Steven F Jorgensen Mark C. Stone Thomas A. Fontaine 《Journal of the American Water Resources Association》2000,36(2):375-386
ABSTRACT: The Great Plains of the United States, drained primanly by the Missouri River, are very sensitive to shifts in climate. The six main stem dams on the Missouri River control more than one‐half of the nearly 1.5 million square kilometer basin and can store three times the annual inflow from upstream. The dams are operated by the U.S. Army Corps of Engineers using a Master Manual that describes system priorities and benefits. The complex operational rules were incorporated into the Soil and Water Assessment Tool computer model (SWAT). SWAT is a distributed parameter rainfall‐runoff model capable of simulating the transpiration suppression effects of CO2 enrichment. The new reservoir algorithms were calibrated using a 25‐year long historic record of basin climate and discharge records. Results demonstrate that it is possible to incorporate the operation of a highly regulated river system into a complex rainfall‐runoff model. The algorithms were then tested using extreme climate scenarios indicative of a prolonged drought, a short drought, and a ten percent increase in basin‐wide precipitation. It is apparent that the rules for operating the reservoirs will likely require modification if, for example, upper‐basin precipitation were to increase only ten percent under changed climate conditions. 相似文献
6.
ABSTRACT: In 1996, the Illinois State Geological Survey began an investigation of fluctuating water levels in a pond in Cary, Illinois. The cause of the fluctuations appeared to be ground water discharge into a storm sewer recently installed by the Illinois Department of Transportation. However, analysis of climatic data provided an equally likely explanation of the fluctuations. Distinguishing the effect of climatic variations from the effect of the storm sewer was hampered by the lack of antecedent ground water and surface water data. In similar settings, it is recommended that ground water and surface water data be collected prior to initiating any infrastructure improvements. 相似文献
7.
Geoff Kite 《Journal of the American Water Resources Association》1998,34(4):743-753
ABSTRACT: The effects of changes in the landscape and climate over geological time are plain to see in the present hydrological regime. More recent anthropogenic changes may also have effects on our way of life. A prerequisite to predicting such effects is that we understand the interactions between climate, landscape and the hydrological regime. A semi-distributed hydrological model (SLURP) has been developed which can be used to investigate, in a simple way, the links between landscape, climate and hydrology for watersheds of various sizes. As well as using data from the observed climate network, the model has been used with data from atmospheric models to investigate possible changes in hydrology. A critical input to such a model is knowledge of the links between landscape and climate. While direct anthropogenic effects such as changes in forested area may presently be included, the indirect effects of climate on landscape and vice versa are not yet modeled well enough to be explicitly included. The development of models describing climate-landscape relationships such as regeneration, development and breakup, water and carbon fluxes at species, ecosystem and biome level is a necessary step in understanding and predicting the effects of changes in climate on landscape and on water resources. Forest is the predominant land cover in Canada covering 453 Mha and productivity/succession models for major forest types should be included in an integrated climate-landscape-water simulation. 相似文献
8.
Geoff Kite 《Journal of the American Water Resources Association》1998,34(6):1247-1254
ABSTRACT: Climatic variation and the possibility of anthropogenically-caused climatic change have emphasized the need for global hydrological cycle models able to simulate the impacts of climate on the atmosphere, continents and oceans. To date, global atmospheric and oceanic models have been developed but, to the best of the author's knowledge, there are no continental hydrological models. Instead, hydrological models continue to develop at the catchment scale and the land phase component of the global hydrologic cycle is modeled as parameterizations within atmospheric models. The author argues that this is not the best solution; that the present land surface components of atmospheric models do not accurately model land phase hydrology and that, instead, atmospheric and oceanic models should be linked to continental-scale hydrological models to form a true model of the global hydrological cycle. 相似文献
9.
Paul D. Bakke Robert Thomas Charles Parrett 《Journal of the American Water Resources Association》1999,35(4):911-921
ABSTRACT: A regional adjustment relationship was developed to estimate long-term (30-year) monthly median discharges from short term (three-year) records. This method differs from traditional approaches in that it is based on site-specific discharge data but does not require correlation of these data with discharges from a single hydrologically similar long-term gage. The method is shown to be statistically robust, and applicable to statistics other than the median. 相似文献
10.
Charles R. Kratzer 《Journal of the American Water Resources Association》1999,35(2):379-395
ABSTRACT: Most of the application of the organophosphate insecticide diazinon in the San Joaquin River Basin occurs in winter to control wood-boring insects in dormant almond orchards. A federalstate collaborative study found that diazinon accounted for most of the observed toxicity of San Joaquin River water in February 1993. Previous studies focused mainly on west-side inputs to the San Joaquin River. In this 1994 study, the three major east-side tributaries to the San Joaquin River - the Merced, Tuolumne, and Stanislaus rivers - and a downstream site on the San Joaquin River were sampled throughout the hydrographs of a late January and an early February storm. In both storms, the Tuolumne River had the highest concentrations of diazinon and transported the largest load of the three tributaries. The Stanislaus River was a small source in both storms. On the basis of previous storm sampling and estimated travel times, ephemeral west-side creeks probably were the main diazinon source early in the storms, whereas the Tuolumne and Merced rivers and east-side drainages directly to the San Joaquin River were the main sources later. Although 74 percent of diazinon transport in the San Joaquin River during 1991–1993 occurred in January and February, transport during each of the two 1994 storms was only 0.05 percent of the amount applied during preceding dry periods. Nevertheless, some of the diazinon concentrations in the San Joaquin River during the January storm exceeded 0.35 μ/L, a concentration shown to be acutely toxic to water fleas. On the basis of this study and previous studies, diazinon concentrations and streamflow are highly variable during January and February storms, and frequent sampling is required to evaluate transport in the San Joaquin River Basin. 相似文献
11.
Norman L. Miller Jinwon Kim Robert K. Hartman John Farrara 《Journal of the American Water Resources Association》1999,35(6):1525-1537
ABSTRACT: Downscaling coarse resolution climate data to scales that are useful for impact assessment studies is receiving increased attention. Basin-scale hydrologic processes and other local climate impacts related to water resources such as reservoir management, crop and forest productivity, and ecosystem response require climate information at scales that are much finer than current and future GCM resolutions. The Regional Climate System Model (RCSM) is a dynamic downscaling system that has been used since 1994 for short-term precipitation and streamflow predictions and seasonal hindcast analysis with good skill. During the 1997–1998 winter, experimental seasonal forecasts were made in collaboration with the NOAA Climate Prediction Center and UCLA with promising results. Preliminary studies of a control and 2°CO2 perturbation for the southwestern U.S. have been performed. 相似文献
12.
Randall T. Hanson Michael D. Dettinger 《Journal of the American Water Resources Association》2005,41(3):517-536
ABSTRACT: Climate variations can play an important, if not always crucial, role in successful conjunctive management of ground water and surface water resources. This will require accurate accounting of the links between variations in climate, recharge, and withdrawal from the resource systems, accurate projection or predictions of the climate variations, and accurate simulation of the responses of the resource systems. To assess linkages and predictability of climate influences on conjunctive management, global climate model (GCM) simulated precipitation rates were used to estimate inflows and outflows from a regional ground water model (RGWM) of the coastal aquifers of the Santa Clara‐Calleguas Basin at Ventura, California, for 1950 to 1993. Interannual to interdecadal time scales of the El Niño Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate variations are imparted to simulated precipitation variations in the Southern California area and are realistically imparted to the simulated ground water level variations through the climate‐driven recharge (and discharge) variations. For example, the simulated average ground water level response at a key observation well in the basin to ENSO variations of tropical Pacific sea surface temperatures is 1.2 m/°C, compared to 0.9 m/°C in observations. This close agreement shows that the GCM‐RGWM combination can translate global scale climate variations into realistic local ground water responses. Probability distributions of simulated ground water level excursions above a local water level threshold for potential seawater intrusion compare well to the corresponding distributions from observations and historical RGWM simulations, demonstrating the combination's potential usefulness for water management and planning. Thus the GCM‐RGWM combination could be used for planning purposes and — when the GCM forecast skills are adequate — for near term predictions. 相似文献
13.
William A. Pike 《Journal of the American Water Resources Association》2004,40(6):1563-1578
ABSTRACT: Compliance violations at community water systems are rare but represent significant human health risks. These risks are mediated by the decision schema of human operators at water treatment facilities. However, causal uncertainty among physical and human factors involved in water quality problems complicates assessment of their probability and severity. This study uses a probabilistic Bayesian network modeling approach to explore the causes of compliance violations in a sample of water treatment systems in Pennsylvania. The model presented here is one of several created by treatment system operators during an expert elicitation process. The expert model alone predicts violations poorly, suggesting that experts make inaccurate quantitative estimates. However, Bayesian networks are capable of combining the subjective expertise of treatment system operators with the objective compliance histories of the facilities they manage, and the expert model accurately predicts violations when trained with historical compliance data. Analysis of the trained network reveals those components of the treatment process, including environmental and system characteristics as well as operator decisions, that play the greatest role in determining the likelihood of major violation types. Among operator decisions, coagulant dosing and filter backwash frequency are the most important determinants of violation likelihood. 相似文献
14.
David Meko Donald A. Graybill 《Journal of the American Water Resources Association》1995,31(4):605-616
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin. 相似文献
15.
Thomas C Pagano David C Garen Tom R Perkins Phillip A Pasteris 《Journal of the American Water Resources Association》2009,45(3):767-778
Abstract: Official seasonal water supply outlooks for the western United States are typically produced once per month from January through June. The Natural Resources Conservation Service has developed a new outlook product that allows the automated production and delivery of this type of forecast year‐round and with a daily update frequency. Daily snow water equivalent and water year‐to‐date precipitation data from multiple SNOTEL stations are combined using a statistical forecasting technique (“Z‐Score Regression”) to predict seasonal streamflow volume. The skill of these forecasts vs. lead‐time is comparable to the official published outlooks. The new product matches the intra‐monthly trends in the official forecasts until the target period is partly in the past, when the official forecasts begin to use information about observed streamflows to date. Geographically, the patterns of skill also match the official outlooks, with highest skill in Idaho and southern Colorado and lowest skill in the Colorado Front Range, eastern New Mexico, and eastern Montana. The direct and frequent delivery of objective guidance to users is a significant new development in the operational hydrologic seasonal forecasting community. 相似文献
16.
Robert V. Sobczak Thomas C. Cambareri 《Journal of the American Water Resources Association》2002,38(3):747-757
ABSTRACT: An inverse‐simulation approach is used to determine optimal strategies for developing public water‐supply systems in a shallow, coastal aquifer on the outermost arm of the Cape Cod peninsula in Massachusetts. Typically a forward simulation (or “trial and error”) approach is used to find best pumping strategies, but the chances of finding success with this tact diminish as the number of potential options grows large. Well locations and pumping rates are optimized with respect to: (1) providing sufficient water to areas of water‐quality impairment, (2) minimizing impacts to nearby surface waters, (3) preventing saltwater contamination due to overpumping, and (4) minimizing financial cost of well development. Potential well sites and water‐supply scenarios are separated into “politically‐based” and “resource‐based” categories to gain insight into the degree that pre‐existing political boundaries hinder best management practices. The approach provides a promising tool in transboundary water‐resources settings because it allows stakeholders to find solutions that best meet everyone's goals, as opposed to pursuing options that will create conflict, or are less than optimal. 相似文献
17.
ABSTRACT: A diffusive tank model has been successfully applied to the simulation of runoff from paddy fields in Japan because it can well describe the features of local water flows. The main goal of the study is to evaluate the performance of the diffusive tank model with the calibrated parameters obtained in Jyau‐Shi to simulate discharge from paddy fields in two experimental catchments located in the areas of Shing‐Ying and Ta‐Liao, Southwestern Taiwan. The simulations were verified by comparing the model results with observed runoff data from the two experimental catchments. The model predicted the discharge from the paddy fields well. This indicates that the model with the calibrated parameters may be used in other paddy fields in Taiwan. 相似文献
18.
Mark M. Wilsnack Victor P. Kelson Jack F. Wittman 《Journal of the American Water Resources Association》2005,41(1):67-76
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer. 相似文献
19.
Gregory J. McCabe David M. Wolock 《Journal of the American Water Resources Association》1999,35(6):1473-1484
ABSTRACT: April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western U.S. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow. 相似文献