首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
ABSTRACT: A synthetic relationship is developed between nutrient concentrations and discharge rates at two river gauging sites in the Illinois River Basin. Analysis is performed on data collected by the U.S. Geological Survey (USGS) on nutrients in 1990 through 1997 and 1999 and on discharge rates in 1988 through 1997 and 1999. The Illinois River Basin is in western Arkansas and northeastern Oklahoma and is designated as an Oklahoma Scenic River. Consistently high nutrient concentrations in the river and receiving water bodies conflict with recreational water use, leading to intense stakeholder debate on how best to manage water quality. Results show that the majority of annual phosphorus (P) loading is transported by direct runoff, with high concentrations transported by high discharge rates and low concentrations by low discharge rates. A synthetic relationship is derived and used to generate daily phosphorus concentrations, laying the foundation for analysis of annual loading and evaluation of alternative management practices. Total nitrogen (N) concentration does not have as clear a relationship with discharge. Using a simple regression relationship, annual P loadings are estimated as having a root mean squared error (RMSE) of 39.8 t/yr and 31.9 t/yr and mean absolute percentage errors of 19 percent and 28 percent at Watts and Tahlequah, respectively. P is the limiting nutrient over the full range of discharges. Given that the majority of P is derived from Arkansas, management practices that control P would have the most benefit if applied on the Arkansas side of the border.  相似文献   

2.
    
ABSTRACT: Phosphorus (P) in runoff from long term animal waste application fields can contribute to accelerated eutrophication of surface waters. Manure when applied at nitrogen (N) agronomic rates generally increases soil P concentrations, which can increase runoff of soluble P. Along the North Bosque River in central Texas, dairy waste application fields are identified as the most controllable nonpoint source of soluble P in a total maximum daily load. To evaluate P reduction practices for fields high in soil extractable P, edge‐of‐field runoff was measured from paired plots of Coastal bermudagrass (Cynodon dactylon) and sorghum (Sorghum bicolor)/ winter wheat (Triticum spp.). Plots (about 0.4 ha) received manure at P agronomic rates following Texas permit guidelines and commercial N during the pretreatment period. During the post‐treatment period, control plots continued to receive manure at P agronomic rates and commercial N. Treatment plots received only commercial N during the post‐treatment period. Use of only commercial N on soils with high extractable P levels significantly decreased P loadings in edge‐of‐field runoff by at least 40 percent, but runoff concentrations sometimes increased. No notable changes in extractable soil P concentrations were observed after five years of monitoring due to drought conditions limiting forage uptake and removal.  相似文献   

3.
    
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

4.
    
The “Measured Annual Nutrient loads from AGricultural Environments” (MANAGE) database was published in 2006 to expand an early 1980s compilation of nutrient export (load) data from cultivated and pasture/range land at the field or farm scale. Then in 2008, MANAGE was updated with 15 additional studies, and nitrogen (N) and phosphorus (P) concentrations in runoff were added. Since then, MANAGE has undergone significant expansion adding N and P water quality along with relevant management and site characteristic data from: (1) 30 runoff studies from forested land uses, (2) 91 drainage water quality studies from drained land, and (3) 12 additional runoff studies from cultivated and pasture/range land uses. In this expansion, an application timing category was added to the existing fertilizer data categories (rate, placement, formulation) to facilitate analysis of 4R Nutrient Stewardship, which emphasizes right fertilizer source, rate, time, and place. In addition, crop yield and N and P uptake data were added, although this information was only available for 21 and 7% of studies, respectively. Inclusion of these additional data from cultivated, pasture/range, and forest land uses as well as artificially drained agricultural land should facilitate expanded spatial analyses and improved understanding of regional differences, management practice effectiveness, and impacts of land use conversions and management techniques. The current version is available at www.ars.usda.gov/spa/manage-nutrient .  相似文献   

5.
    
ABSTRACT: Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1, 25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year; 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987–1990.  相似文献   

6.
    
ABSTRACT: A synoptic sampling of five surface-water sites in central Nebraska was conducted by the U.S. Geological Survey as part of its National Water-Quality Assessment Program during storm runoff in May 1992 to relate transport, yields, and concentrations of atrazine to environmental setting. Atrazine was the most extensively applied pesticide in the study unit. Atrazine transport was related to the size of contributing drainage area, quantity of atrazine applied, amount of precipitation, and volume of stream-flow. Estimated yields and mean concentrations of atrazine were related to the percentage of cropland in a drainage area. The largest estimated yields and mean concentrations of atrazine in surface water were associated from drainage areas with the highest percentage of cropland, and the smallest was associated with the smallest amount of cropland. Atrazine concentrations increased as streamflow increased but decreased at or near the time of peak streamflows, perhaps due to dilution. Atrazine concentrations then increased and remained elevated far into the stream recession. Atrazine is a regulated contaminant in finished public-water supplies. Large concentrations of atrazine could affect the management of public-water supplies because atrazine remains in solution in contrast to many other pesticides that are more easily removed.  相似文献   

7.
    
ABSTRACT: A study of stream base flow and NO3‐N concentration was conducted simultaneously in 51 subwatersheds within the 116‐square‐kilometer watershed of East Mahantango Creek near Klingerstown, Pennsylvania. The study was designed to test whether measurable results of processes and observations within the smaller watersheds were similar to or transferable to a larger scale. Ancillary data on land use were available for the small and large watersheds. Although the source of land‐use data was different for the small and large watersheds, comparisons showed that the differences in the two land‐use data sources were minimal. A land use‐based water‐quality model developed for the small‐scale 7.3‐square‐kilometer watershed for a previous study accurately predicted NO3‐N concentrations from sampling in the same watershed. The water‐quality model was modified and, using the imagery‐based land use, was found to accurately predict NO3‐N concentrations in the subwatersheds of the large‐scale 116‐square‐kilometer watershed as well. Because the model accurately predicts NO3‐N concentrations at small and large scales, it is likely that in second‐order streams and higher, discharge of water and NO3‐N is dominated by flow from smaller first‐order streams, and the contribution of ground‐water discharge to higher order streams is minimal at the large scale.  相似文献   

8.
    
ABSTRACT: We investigated spatial and temporal relationships among surface and subsurface watershed attributes and stream nutrient concentrations in urbanizing Johnson Creek watershed in northern Oregon. We sampled stream water at eight urban and five nonurban locations from March 1998 through December 1999. We sampled eight wells distributed over the two primary aquifers in the watershed. Using a Geographic Information System (GIS), percentages of landuse attributes within a radius of 30, 91, and 152 m from each sample site were quantified. We analyzed relationships between (1) nutrient concentrations and percentage cover of different landuse attributes, and (2) nutrient concentrations and underlying hydrologic units. We did not find a significant relationship between ground water chemistry and stream water chemistry. We found elevated levels of phosphorus (P) concentrations correlated with urban landuse, while higher nitrogen (N) concentrations were correlated with nonurban (primarily agricultural) landuse. We concluded that elevated levels of N in nonurban areas of Johnson Creek watershed were associated with agricultural practices. We further concluded that urban development factors such as increases in storm drains, dry wells, and impermeable surfaces may be responsible for higher input of P to the stream in urbanizing areas of the Johnson Creek watershed.  相似文献   

9.
    
Water quality impairment due to excessive nutrients and sediment is a major problem in the United States (U.S.). An important step in the mitigation of impairment in any given water body is determination of pollutant sources and amount. The sheer number of impaired waters and limited resources makes simplistic load estimation methods such as export coefficient (EC) methods attractive. Unfortunately ECs are typically based on small watershed monitoring data, which are very limited and/or often based on data collected from distant watersheds with drastically different conditions. In this research, we seek to improve the accuracy of these nutrient export estimation methods by developing a national database of localized EC for each ecoregion in the U.S. A stochastic sampling methodology loosely based on the Monte‐Carlo technique was used to construct a database of 45 million Soil and Water Assessment Tool (SWAT) simulations. These simulations consider a variety of climate, topography, soils, weather, land use, management, and conservation implementation conditions. SWAT model simulations were successfully validated with edge‐of‐field monitoring data. Simulated nutrient ECs compared favorably with previously published studies. These ECs may be used to rapidly estimate nutrient loading for any small catchment in the U.S. provided the location, area, and land‐use distribution are known.  相似文献   

10.
    
ABSTRACT: Twenty‐three stream sites representing a range of forested, agricultural, and urban land uses were sampled in the South Platte River Basin of Colorado from July through September 2002 to characterize water quality during drought conditions. With a few exceptions, dissolved ammonia, Kjeldahl nitrogen, total phosphorus, and dissolved orthophosphate concentrations were similar to seasonal historical levels in all land use areas during the drought. At some agricultural sites, decreased dilution of irrigation return flow may have contributed to higher concentrations of some nutrient species, increased primary productivity, and higher dissolved oxygen concentrations. At some urban sites, decreased dilution of base flow and wastewater treatment plant effluent may have contributed to higher dissolved nitrite‐plus‐nitrate concentrations, increased primary productivity, and higher dissolved oxygen concentrations. Total pesticide concentrations in urban and agricultural areas were not consistently higher or lower during the drought. At most forested sites, decreased dilution of ground water‐derived calcium bicarbonate type base flow likely led to elevated pH and specific‐conductance values. Water temperatures at many of the forested sites also were higher, contributing to lower dissolved oxygen concentrations during the drought.  相似文献   

11.
    
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

12.
    
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

13.
    
Watershed planning groups and action agencies seek to understand how lake water quality responds to changes in watershed management. This study developed and demonstrated the applicability of an integrated modeling approach for providing this information. An integrated model linking watershed conditions to water-quality of the receiving lake incorporated the following components: (1) an event-based AGNPS model to estimate watershed pollutant losses; (2) annualization of AGNPS results to produce annual lake pollutant loadings; (3) a base flow separation package, SAM, to estimate base flow; (4) estimates of nutrients in base flow and point sources; and (5) linkage of watershed loadings directly to EUTROMOD lake water quality algorithms. Results are presented for Melvern Lake, a 28-km2 multipurpose reservoir with a 900-km2 agricultural watershed in east central Kansas. Reasonable estimates of current lake quality were attained using an average phosphorus availability factor of 31 percent to calibrate model results to measured in-lake phosphorus. Comparison of a range of possible scenarios, including all cropland changed to no-till (best case) and all CRP and good-condition grasslands changed to cropland (worst case), indicated only a (4 percent change for in-lake phosphorus and a (2 percent change for chlorophyll a. These results indicated that this watershed is not sensitive to projected changes in land use and management.  相似文献   

14.
    
ABSTRACT: Pesticides in stormwater runoff, within the Sacramento River Basin, California, were assessed during a storm that occurred in January 1994. Two organophosphate insecticides (diazinon and methidathion), two carbamate pesticides (molinate and carbofuran), and one triazine herbicide (simazine) were detected. Organophosphate pesticide concentrations increased with the rising stage of the hydrographs; peak concentrations were measured near peak discharge. Diazinon oxon, a toxic degradation product of diazinon, made up approximately 1 to 3 percent of the diazinon load. The Feather River was the principal source of organophosphate pesticides to the Sacramento River during this storm. The concentrations of molinate and carbofuran, pesticides applied to rice fields during May and June, were relatively constant during and after the storm. Their presence in surface water was attributed to the flooding and subsequent drainage, as a management practice to degrade rice stubble prior to the next planting. A photo-degradation product of molinate, 4-keto molinate, was in all samples where molinate was detected and made up approximately 50 percent of the total molinate load. Simazine, a herbicide used in orchards and to control weeds along the roadways, was detected in the storm runoff, but it was not possible to differentiate the two sources of that pesticide to the Sacramento River.  相似文献   

15.
16.
ABSTRACT: While the quality of rivers has received much attention, the degradation of small streams in upland areas of watersheds has only recently been recognized as a major problem. A major cause of the problem is increases in nonpoint source pollution that accompany urban expansion. A case study is used to examine the potential for storm water detention as a means of controlling water quality in streams of small watersheds. The storm water management basin, which is frequently used to control increases in discharge rates, can also be used to reduce the level of pollutants in inflow to receiving streams. Data collected on a 148-acre site in Maryland shows that a detention basin can trap as much as 98 percent of the pollutant in the inflow. For the 11 water quality parameters, most showed reductions of at least 60 percent, depending on storm characteristics.  相似文献   

17.
    
A multi-tier approach for agricultural watershed management has been proposed. The approach involves identification of a watershed management issue/problem, selection or development of simple conceptual model suitable for the exploration of the issue/problem identified and appropriate to the database available, and application of the model the address the identified issue/problem. The procedure is repeated by increasing the complexity in the conceptual model until the identified issue/problem has been addressed satisfactorily. An application of the procedure to an example watershed in southern Ontario conditions is shown. The application example has revealed that for identification of temporal pattern of runoff and sediment loads a simple conceptual model is adequate. For identification of spatial location of the sediment source areas and for the development of a monitoring program for the evaluation of remedial strategies a more complex distributed agricultural watershed model is necessary.  相似文献   

18.
ABSTRACT: A model for urban stormwater quality was developed in this study. The basis for the model is the process by which pollutants build up on the watershed surface. For the wet climate of the study site, it was assumed that there exists an interval of time over which the pollutant buildup equals the pollutant washoff (no accumulation of pollutant). The buildup model was represented by a linear function of the antecedent dry time. The buildup function was then linked with a pollutant washoff model represented by a power function of the storm runoff volume. Various time intervals for no net accumulation were tested to calibrate the model. The model was calibrated to observed data for two small urban basins in Baton Rouge, Louisiana, and model results were used to analyze the behavior of phosphorus concentrations in storm runoff from these basins over a long period of time.  相似文献   

19.
    
ABSTRACT: Pollutants entering a water system can be very destructive to the health of that system. Best Management Practices (BMPs) are used to reduce these pollutants, but understanding the most effective practices is very difficult. Watershed models are an effective tool to aid in the decision‐making process of selecting the BMPs that are most effective in reducing the pollutant loading and are also the most cost effective. The Annualized Agricultural Nonpoint Source Pollution model (AnnAGNPS 2.0) is a technological tool that can be used to estimate watershed response to agricultural management practices. The main purpose of this paper is to test the performance of AnnAGNPS 2.0 on nitrogen loading using comparisons with measurements from the Deep Hollow watershed of the Mississippi Delta Management Systems Evaluation Area (MDMSEA) project. Previous work has demonstrated the capability of the model to simulate runoff and sediment. From sensitivity analyses in this study, initial nitrogen concentration in the soil and crop nitrogen uptake had the most impact on the nitrogen loadings. AnnAGNPS simulations of monthly nitrogen loadings are poor. However, statistical test (t‐test) showed that the predicted nitrogen loading is not significantly different from observed nitrogen loading at the 95 percent level of confidence.  相似文献   

20.
    
ABSTRACT: An extensive base of water quality information emphasizing the effects of land use and hydrology was obtained in the karstified Fountain Creek watershed of southwestern Illinois to help resolve local water quality issues. Agrichemicals dominate the loads of most water quality constituents in the streams and shallow karstic ground water. Only calcium (Ca), magnesium (Mg), Aluminum (A1), and sulfate (SO4) ions are predominantly derived from bedrock or soils, while agrichemicals contribute most of the sodium (Na), potassium (K), chlorine (Cl), nitrate (NO3), fluorine (F), phosphorus (P), and atrazine. Concentrations of individual ions correlate with discharge variations in karst springs and surface streams; highly soluble ions supplied by diffuse ground water are diluted by high flows, while less soluble ions increase with flow as they are mobilized from fields to karst conduits under storm conditions. Treated wastewater containing detergent residues dominates the boron load of streams and provides important subordinate loads of several other constituents, including atrazine derived from the Mississippi River via the public water supply. Average surface water concentrations at the watershed outlet closely approximate a 92:8 mixture of karst ground water and treated wastewater, demonstrating the dominance of ground water contributions to streams. Therefore the karst aquifer and watershed streams form a single water quality system that is also affected by wastewater effluent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号