首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
ABSTRACT: The great temporal and spatial variability of pine flat-woods hydrology suggests traditional short-term field methods may not be effective in evaluating the hydrologic effects of forest management. The FLATWOODS model was developed, calibrated and validated specifically for the cypress wetland-pine upland landscape. The model was applied to two typical flatwoods sites in north central Florida. Three harvesting treatments (Wetland Harvesting, Wetland + Upland Harvesting, and Control) under three typical climatic conditions (dry, wet, and normal precipitation years) were simulated to study the potential first-year effects of common forest harvesting activities on flatwoods. Long-term (15 years) simulation was conducted to evaluate the hydrologic impacts at different stages of stand rotation. This simulation study concludes that forest harvesting has substantial effects on hydrology during dry periods and clear cutting of both wetlands and uplands has greater influence on the water regimes than partial harvesting. Compared to hilly regions, forest harvesting in the Florida coastal plains has less impact on water yield.  相似文献   

2.
ABSTRACT: The large volumes of ground water that are discharged from the Everglades toward the Miami metropolitan area have historically posed a significant environmental water supply problem. In order to analyze the effects of seepage barriers on these subsurface outflows, the analytic element modeling code GFLOW was used to construct a ground water flow model of a region that includes a portion of the Everglades along with adjacent developed areas. The hydrology of this region can be characterized by a highly transmissive surficial aquifer in hydraulic contact with wetlands and canals. Calibration of the model to both wet and dry season conditions yielded satisfactory results, and it was concluded that the analytic element method is a suitable technique for modeling ground water flow in the Everglades environment. Finally, the model was used to evaluate the potential effectiveness of a subsurface barrier approximately two miles long for increasing water levels within the adjacent fringes of the Everglades National Park. It was found that the barrier had a negligible effect on water levels due to both its relatively short length and the high transmissivity of the surficial aquifer.  相似文献   

3.
ABSTRACT: While much is known about the hydrology of forested mountain catchments in the Pacific Northwest, important research questions remain. For example, the dynamics of storm precipitation amounts and the modeling of catchment outflows represent a continuing research need. Without an improved understanding of the spatial and temporal aspects of storm precipitation patterns, our ability to evaluate and improve physically-based hydrologic models is limited. From a practical perspective, tens of thousands of kilometers of access roads have been constructed across forested catchments of the Pacific Northwest. Yet, few forestry research programs focus on road drainage (e.g., ditches, culverts, fords). The few studies that address this issue indicate road drainage systems need to function effectively over a wide range of flow events and terrain conditions. In addition, historical forest practices associated with hillslopes and riparian systems have altered the character of many Pacific Northwest aquatic ecosystems. If restoration of these systems is to be effective, research efforts are needed to better understand the linkages between riparian forests, geomorphic processes, and hydrologic disturbance regimes.  相似文献   

4.
ABSTRACT: This paper explores a range of forest hydrology issues and identifies my concepts of the field's most pressing research needs. I extend the topic to include teaching and education in the broader sense because current teaching is usually part of the researcher's portfolio and because education involves that of both the research scientist and a broader audience. I consider the primary research, education, and service roles of the forest hydrologist also within a range of domains or, as I prefer to identify them, scales: (1) the molecular or pore level; (2) hydrological process; (3) watershed function; (4) global considerations, and (5) the human dimension which, while not actually a scale itself, embraces, is important to, and is affected by the first four. All are topics screaming for attention by researchers, educators, and practitioners. I shall here focus on the middle three.  相似文献   

5.
ABSTRACT. Estimates of peak flows, with specified return periods, are needed in practice for the design of works that affect streams in forested areas. In the province of British Columbia (B.C.), Canada, the new Forest Practices Code specifies the 100-year instantaneous peak flow (Q100) for the design of bridges and culverts for stream crossings under forest roads; and many practitioners are engaged in making such estimates. The state of the art is still quite primitive, very similar to the state of urban hydrology 30 years ago, when popular estimating techniques were used with little consideration given to their applicability. Urban hydrology then evolved on a much more scientific basis, such that within about a 10-year period, standard approaches to design were developed. Forest hydrology should follow the same pattern, at least as far as estimating design flows is concerned. Popular present day design procedures include the rational method and other empirical approaches based on rainfall data, as use of the standard flood frequency approach is limited by the paucity of relevant flow data. Estimating procedures based on peak streamflow measurements and statistics are likely to evolve, and these will include distinctions for rain, snowmelt, and rain on snow floods. Guidelines will also be developed for selecting and applying appropriate procedures for particular areas.  相似文献   

6.
ABSTRACT: Wetland restoration activities may disturb shallow ground‐water flow dynamics. There may be unintentional sources of water flowing into a constructed wetland that could compromise the long‐term viability of a wetland function. Measurement of naturally‐occurring isotopes in the hydrosphere can provide an indication of provenance, flow paths or components, and residence times or ages of wetland ground‐water flow systems. Hydraulic head measurements may not provide sufficient detail of shallow flow disturbances and can be complemented by analyzing isotopes in waters flowing through the wetland. Two north‐central Indiana wetlands in the Kankakee watershed are being studied to determine the adequacy of wetland restoration activities. The native LaSalle wetland and the restored Hog Marsh wetland have contrasting ground‐water flow regimes. The conservative water isotopes 18O, 2H, and 3H, and selected solute isotopes 13C, 14C, 15N, 34S, 87Sr, and 206–208Pb, demonstrate the complexity of ground‐water flow in Hog Marsh compared to the established flow regime at the LaSalle wetland.  相似文献   

7.
ABSTRACT: There are increasing concerns in the forestry community about global climate change and variability associated with elevated atmospheric CO2. Changes in precipitation and increases in air temperature could impose additional stress on forests during the next century. For a study site in Carteret County, North Carolina, the General Circulation Model, HADCM2, predicts that by the year 2099, maximum air temperature will increase 1.6 to 1.9°C, minimum temperature will increase 2.5 to 2.8°C, and precipitation will increase 0 to 10 percent compared to the mid‐1990s. These changes vary from season to season. We utilized a forest ecosystem process model, PnET‐II, for studying the potential effects of climate change on drainage outflow, evapotranspiration, leaf area index (LAI) and forest Net Primary Productivity (NPP). This model was first validated with long term drainage and LAI data collected at a 25‐ha mature loblolly pine (Pinus taeda L.) experimental watershed located in the North Carolina lower coastal plain. The site is flat with poorly drained soils and high groundwater table. Therefore, a high field capacity of 20 cm was used in the simulation to account for the topographic effects. This modeling study suggested that future climate change would cause a significant increase of drainage (6 percent) and forest productivity (2.5 percent). Future studies should consider the biological feedback (i.e., stomata conductance and water use efficiency) to air temperature change.  相似文献   

8.
ABSTRACT: Forest hydrology should be a mature science with routine use of hydrological procedures to evaluate the effect of past, current and proposed harvesting practices on water resources. It is not. However, water users are pressuring forest managers to exercise their role in managing forested watersheds for water supply. Most forest managers are poorly equipped to carry out this role. Forestry schools need to ensure that their graduates, whether employed in forest management positions or as specialists in watershed management, understand that all forestry operations may affect instream or downstream water users. Specialists in forest hydrology should be fully aware of the following: (1) climate and watershed characteristics influence streamflow in separate ways; (2) forestry practices produce changes in water yield and quality, and that only these changes need to be evaluated to estimate their effects; (3) watershed storage is a critical factor in evaluating the effects of harvesting on streamflow; and (4) the effect of harvest on one watershed cannot be extrapolated to another without consideration of the processes affected. Research is needed to assist watershed managers in applying models to watersheds for which climate and streamflow data are insufficient. Research is also needed to incorporate climate, streamflow and other data for hydrological models into geographic information systems. Joint research projects are needed to develop physical relationships between stream channel characteristics of importance to fisheries biologists and streamflow characteristics affected by forest harvest.  相似文献   

9.
ABSTRACT: Areas of low topographic relief have low water-table gradients and make the direction of movement of contaminants from land fills in the ground water difficult to predict from regional gradients alone. The landfill, nearby free-flowing ditches or canals, variations in hydraulic conductivity, and the influence of nearby pumping wells can all affect the direction of flow. In low-gradient areas the concepts of “upgradient” and “downgradient” are less useful in planning the location of monitoring wells than in areas of higher relief. Low-relief areas also may be affected by the discharge of mineralized water from deeper aquifers, naturally or through irrigation, which can mask geochemical surveys intended to detect landfill leachate. Examples of effects of low topographic relief are noted in southeast Florida where water-table gradients are 7×10?-4 to 5×10?-4 feet per foot. Water-table mounding beneath the landfill and the drainage effects of nearby ditches and well have created multiple leachate plumes in Stuart where one plume migrated in a direction opposite to the apparent regional gradient. In Coral Springs analysis suggests a bifurcating plume migrating along two narrow zones. In Fort Pierce it was difficult to detect leachate because of mineralized irrigation water and fertilizer runoff from an adjacent citrus grove.  相似文献   

10.
Extreme rainfall frequency analysis provides one means to predict, within certain limits of probability, the average time interval between the recurrences of storms of a specified duration and magnitude. This in turn furnishes the forest hydrologist a valuable tool for engineering design and runoff and erosion forecast. A modification in the application of the annual maximum and annual exceedance series analysis described by V. T. Chow can, for special purposes, lead to an even more useful estimate of extreme events on a seasonal basis. This can be particularly important on small forested headwater watersheds where the runoff response to extreme rainfall may vary considerably with seasonal changes in canopy cover and soil moisture characteristics. Although the application of data covering a relatively short period of record has produced some inconsistencies among the frequency diagrams, under certain circumstances for short-term recurrence interval forecast and for non-critical application the analysis of extreme rainfall frequency from less than 20 years data seems justified.  相似文献   

11.
ABSTRACT: Data were obtained from drilling and testing of a test injection well for deep underground injection of waste water effluent from the proposed 50-million-gallon-per-day (mgd) South District Regional Wastewater Treatment Plant of the Miami-Dade Water and Sewer Authority, Dade County, Florida. The drilling operation progressed in stages, each stage coverting the strata to be sealed off by the 48-inch, 40-inch, 30-inch, and 20-inch casings, respectively. Total depth of the well is 3,200 feet. The top of the saline, cavernous, dolomitic Boulder Zone was found at 2,790 feet below the surface and is separated from the Floridan aquifer above by approximately 1,100 feet of confining limestone layers. These confining layers were determined, by packer testing, to be very effective. The transmissivity of the Boulder Zone was estimated to be 14 × 106 gallons per day per foot (gpd/ft) from the data obtained from pump out tests. An 8,000-gallon-per-minute (gpm) injection test was conducted to confirm well performance under operating conditions. Based on all of the data obtained, it was concluded that underground injection into the Boulder Zone of secondary waste water effluent from the proposed treatment plant is feasible, both hydraulically and environmentally. A monitoring system was proposed to provide a record of the effects of injection on the subsurface environment.  相似文献   

12.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

13.
ABSTRACT: Riparian buffers have potential for reducing excess nutrient levels in surface water. Spatial variation in riparian buffer effectiveness is well recognized, yet researchers and managers still lack effective general tools for understanding the relevance of different hydrologic settings. We present several terrain‐based GIS models to predict spatial patterns of shallow, subsurface hydrologic flux and riparian hydrology. We then link predictions of riparian hydrology to patterns of nutrient export in order to demonstrate potential for augmenting the predictive power of land use/land cover (LU/LC) maps. Using predicted hydrology in addition to LUILC, we observed increases in the explained variation of nutrient exports from 290 sites across Lower Michigan. The results suggest that our hydrologic predictions relate more strongly to patterns of nutrient export than the presence or absence of wetland vegetation, and that in fact the influence of vegetative structure largely depends on its hydrologic context. Such GIS models are useful and complimentary tools for exploring the role of hydrologic routing in riparian ecosystem function and stream water quality. Modeling efforts that take a similar GIS approach to material transport might be used to further explore the causal implications of riparian buffers in heterogeneous watersheds.  相似文献   

14.
ABSTRACT: As part of the Comprehensive Everglades Restoration Plan (CERP), various water supply projects have been proposed in a region located between the Miami metropolitan area and the extensive regional wetland systems that are part of the Everglades or remnant Everglades. A ground water flow model of the surficial aquifer within northern Miami‐Dade County was constructed using MODFLOW to evaluate the effects of these projects on water levels in the wetlands and the underlying surficial aquifer. The new Wetlands package was used to conjunctively simulate overland flow through these wetlands and the shallow ground water system. Comparisons of simulated to measured ground water levels and wetland stages were very satisfactory, where computed and measured water levels agreed within 0.5 ft over most of the period of record at nearly all of the monitoring sites. Temporal trends in water levels were also replicated. It was concluded that the assumptions and methodologies inherent to the Wetlands package were suitable for simulating regional wetland hydrology within the Everglades area.  相似文献   

15.
ABSTRACT: A controlled burn at Bandelier National Monument got out of control and burned about 43,000 acres (17,400 hectares) near Los Alamos, New Mexico, in May 2000. The wildfire caused dramatic changes in infiltration capacity and wettability of soils in many of the watersheds above Los Alamos National Laboratory (LANL) and destroyed the duff layer, dramatically reducing the interception and infiltration capacity of the formerly forested watersheds. These sudden changes in basin hydrology necessitated a rapid assessment of hydrology and hydraulics for the canyons running through LANL property to evaluate flood risk, plan emergency flood protection measures, and assess potential sediment and actinide transport. This paper presents the results of hydrologic and hydraulic modeling of Los Alamos Canyon following the wildfire. The large scale modeling effort, with over 13,000 cross sections for the hydraulic model (5,000 for Los Alamos Canyon, 8,000 for Guaje Canyon), relied heavily on a geographic information system (GIS) for model input and floodplain delineation. The HEC‐geoRAS model provided good integration between the hydraulic model (HEC‐RAS, Version 3.0.1) and the GIS (ArcView, v. 3.3). These modeling results are being used in drainage master planning efforts at LANL and in the development of sediment transport models using HEC‐6T. Sediment transport modeling results will be used to develop actinide transport models for the canyons at LANL.  相似文献   

16.
ABSTRACT: A modeling framework was developed to determine phosphorus loadings to Lake Okeechobee from watersheds located north of the lake. This framework consists of the land-based model CREAMS-WT, the in-stream transport model QUAL2E, and an interface procedure to format the land-based model output for use by the in-stream model. QUAL2E hydraulics and water quality routines were modified to account for flow routing and phosphorus retention in both wetlands and stream channels. Phosphorus loadings obtained from previous applications of CREAMS-WT were used by QUAL2E, and calibration and verification showed that QUAL2E accurately simulated seasonal and annual phosphorus loadings from a watershed. Sensitivity and uncertainty analyses indicated that the accuracy of monthly loadings can be improved by using better estimates of in-stream phosphorus decay rates, ground water phosphorus concentrations, and runoff phosphorus concentrations as input to QUAL2E.  相似文献   

17.
ABSTRACT: The south Florida ecosystem and Lake Okeechobee are important water resource areas that have degraded due to changes in hydroperiod, water supply, and water quality. Approximately 56 percent of the total phosphorus in water discharged from the Everglades Agricultural Area (EAA) is in particulate form. Currently, farm-level best management practices are being implemented in the effort to reduce total phosphorus and sediment in off-farm discharges. The objective of this work was to develop and calibrate a model describing water movement in primary EAA canals as a first step to development of a water quality (i.e., nutrient, sediment) model. The Netherlands-developed mechanistic flow and water quality model (DUFLOW) was adapted for the EAA. Flow, stage, geometry, canal network, and meteorological data, October 13, 1993, to February 13, 1994, were used to adapt and calibrate the DUFLOW model for EAA water level and flow in primary canals. Direct runoff discharge into the primary canals from farm-pump stations was used as runoff input for the model. The model results are comparable to an independently-calculated water balance for the EAA. The calibrated flow model will be the basis for the calibration of sediment and chemical transport in the future.  相似文献   

18.
ABSTRACT: A growing concern for environmental quality paralleled with increasing demands on our forest resources has prompted the Washington State Department of Natural Resources to evaluate simulation modeling as a technique for analyzing management decisions in terms of their environmental effects. The evaluation focused on a system of integrated models developed at the University of Washington which simulate processes and activities within the forest ecosystem. A major part of the system is a hydrologic model which predicts changes in discharge, stream temperature, and concentrations of suspended sediment and dissolved oxygen based on information generated by other models representing intensive management practices. The evaluation consisted of applying the system to a 72,000 acre tract of forest land, validating the models with two years of discharge and water quality data from a 93,000 acre watershed, and determining the pertinence of hydrologic modeling for management purposes. Results show several potential uses of hydrologic modeling for forest management planning, especially for analyzing the effects of timber harvesting strategies on water quality.  相似文献   

19.
ABSTRACT: One-dimensional contaminant transport through a saturated soil is modeled using a 1.2-m radius geotechnical centrifuge. Small-scale physical modeling in the centrifuge is achieved in relatively short time, at stress distributions that are similar to those experienced in the prototype (actual site). A 0.05 mol/l of sodium chloride solution is used as a contaminant and conductivity cells measure the concentration of the contaminant throughout the porous medium. Scaling analysis for centrifuge modeling and 1-g modeling are briefly discussed and it is concluded that centrifuge modeling simulates the effect of molecular diffusion; however, scaling of the effect of mechanical dispersion may be violated in the centrifuge if the interstitial fluid velocity is high. Centrifuge test results show good agreement with the predicted relationship between the coefficient of hydrodynamic dispersion and the Peclet number using column tests. Centrifuge modeling can be used as a complement of numerical modeling although the effect of mechanical dispersion may be overestimated in the former.  相似文献   

20.
ABSTRACT: This paper describes the application of the SHEET2D model to the Florida's Everglades Nutrient Removal (ENR) Project. The ENR Project is a 3815 acre (1545 ha) pilot project, located in Palm Beach County. The operation of the treatment system will be used to demonstrate the performance of larger scale constructed wetland systems for removal of phosphorus from Everglades Agricultural Area (EAA) stormwater runoff. It is currently the largest stormwater wetland treatment system in the world. The SHEET2D model was used to analyze the performance of the ENR Project. SHEET2D is a two-dimensional, depth-averaged hydrodynamic model that is applicable to shallow water flow conditions. Subsequently, results from SHEET2D simulations were used to develop the ENEMOD model. ENRMOD is a lumped parameter box water quality model that can be used to analyze the long term performance of the ENR project with respect to hydrology and phosphorus uptake. Localized short-circuiting in the agricultural ditches within the project area was analyzed by using the RBFVM-2D model, which is a finite volume hydrodynamic model that is also applicable to shallow water flow conditions. The SHEET2D model was employed to simulate the hydraulics of the structures between cells and the hydrodynamics of the sheet-flow moving across the buffer cell and treatment cells. Collection, distribution, and larger discharge canals within the project were simulated by means of the MultiBasin Routing (MBR) model features that are built into the SHEET2D model. Constant inflows (75 to 600 cfs [2.1 to 17 m3/s]) were used in all runs to simulate the discharge of the ENR Project based on the proposed operating schedule for the outflow pump station. The model simulated 30 days to reach steady state conditions. Under steady state conditions, the hydraulic retention times were computed for the project and the split of flow between the two treatment trains of the entire project from the common buffer cell. Additionally, design components such as height of the levees, capacity of the structures, and hydrographs at specified grids were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号