首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrologic response, defined as the annual direct runoff divided by the annual precipitation, was computed for twenty-one watersheds in or near western Massachusetts, using a total of 232 years of hydrologic records. Variability of the results over the period of analysis was greater than is desirable to inspire confidence in the usefulness of the hydrologic response function; however, the results do suggest that the hydrologic response concept, with appropriate refinements, could be applied successfully to the problem of delineating hydrologic provinces and determination of drainage and storage in unregulated watersheds.  相似文献   

2.
ABSTRACT: Precipitation and streamflow data from three nested subwatersheds within the Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma were used to evaluate the capabilities of the Soil and Water Assessment Tool (SWAT) to predict streamflow under varying climatic conditions. Eight years of precipitation and streamflow data were used to calibrate parameters in the model, and 15 years of data were used for model validation. SWAT was calibrated on the smallest and largest sub‐watersheds for a wetter than average period of record. The model was then validated on a third subwatershed for a range in climatic conditions that included dry, average, and wet periods. Calibration of the model involved a multistep approach. A preliminary calibration was conducted to estimate model parameters so that measured versus simulated yearly and monthly runoff were in agreement for the respective calibration periods. Model parameters were then fine tuned based on a visual inspection of daily hydrographs and flow frequency curves. Calibration on a daily basis resulted in higher baseflows and lower peak runoff rates than were obtained in the preliminary calibration. Test results show that once the model was calibrated for wet climatic conditions, it did a good job in predicting streamflow responses over wet, average, and dry climatic conditions selected for model validation. Monthly coefficients of efficiencies were 0.65, 0.86, and 0.45 for the dry, average, and wet validation periods, respectively. Results of this investigation indicate that once calibrated, SWAT is capable of providing adequate simulations for hydrologic investigations related to the impact of climate variations on water resources of the LWREW.  相似文献   

3.
ABSTRACT: Detailed studies of the surface hydrology of reclaimed surface-mined watersheds for both rainfall and snowmelt events are non-existent for central Alberta yet this information is crucial for design of runoff conveyance and storage structures. A study was initiated in 1992 with principal objectives of quantifying surface runoff for both summer rainfall and spring snowmelt events and identifying the dominant flow processes occurring in two reclaimed watersheds. Snowmelt accounted for 86 and 100% of annual watershed runoff in 1993 and 1994, respectively. The highest instantaneous peak flow was recorded during a summer rainfall event with a return period of greater than 50 years. Infiltration-excess overland flow was identified as the dominant flow process occurring within the Sandy Subsoil Watershed, whereas saturation overland flow was the principal runoff process occurring within the West Watershed.  相似文献   

4.
ABSTRACT: Mathematical models for predicting watershed surface flow responses are available, most of which are elaborate nonlinear numerical surface and channel flow models linked with infiltration models. Such models may be used to make predictions for ungaged areas, assuming an acceptable fitting of the model to the topography and roughness of the real system. For some application purposes, these models are impractical because of their complexity and expensive computer solutions. A procedure is developed that uses a complex model of an ungaged area to derive a simpler parametric nonlinear system model for repetitious simulation with input sequences. The predicted flow outputs are obtained with the simpler model at significant savings of money and time. The procedures for constructing a complex kinematic model of a 40 acre (161,880 m2) reference watershed and deriving the simpler system model are outlined. The results of predictions from both models are compared with a selected set of measured events, all having essentially the same initial conditions. Peak discharges ranged from 3 to 118 ft3/sec (0.085 to 3.34 m3/sec), which includes the largest event of record. The inherent limitations of lumped systems models are demonstrated, including the bias caused by their inability to model infiltration losses after rainfall ceases. Computer costs and times for the models were compared. The derived simple model has a cost advantage when repeated use of a model is required. Such an applications hydrologic model has an engineering tradeoff of reduced accuracy, and lumping bias, but is more economical for certain design purposes.  相似文献   

5.
ABSTRACT: The proliferation of watershed databases in raster Geographic Information System (GIS) format and the availability of radar-estimated rainfall data foster rapid developments in raster-based surface runoff simulations. The two-dimensional physically-based rainfall-runoff model CASC2D simulates spatially-varied surface runoff while fully utilizing raster GIS and radar-rainfall data. The model uses the Green and Ampt infiltration method, and the diffusive wave formulation for overland and channel flow routing enables overbank flow storage and routing. CASC2D offers unique color capabilities to display the spatio-temporal variability of rainfall, cumulative infiltrated depth, and surface water depth as thunderstorms unfold. The model has been calibrated and independently verified to provide accurate simulations of catchment response to moving rainstorms on watersheds with spatially-varied infiltration. The model can accurately simulate surface runoff from flashfloods caused by intense thunderstorms moving across partial areas of a watershed.  相似文献   

6.
ABSTRACT: The successful design of constructed wetlands requires a continuous supply of water or vegetation that can withstand drought conditions. Having a constant water source is the best alternative to insure species diversity throughout the season. Consequently, detention structure designs should be based on times between events as well as on hydrologic return periods, since between events is when most evaporation and infiltration losses are likely to occur. In arid or semi-arid environments, this is a difficult process because of long interevent times and seasonal changes in precipitation patterns. This discussion is predicated on the assumption that phytoplankton, epiphytic algae, and emergent vegetation require moist conditions to be effective at removing nutrients, metals and other pollutants. There are drought tolerant species of vegetation that can be used in constructed wetlands but it may take several days to re-establish the attached bacteria communities necessary for optimum pollutant removal. This paper examines a stochastic framework to examine the probability of extended dry periods based on historic rainfall data. The number of consecutive dry days is selected for a specified level of assurance. By multiplying this value by the sum of daily system losses, an overall pond volume can be determined that ensures a minimum depth of water. To illustrate the utility of the approach, the method is applied to a site in Spokane, Washington.  相似文献   

7.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) has been used for hydrologic analyses at various watershed scales. However, little is known about the model's performance in coastal watersheds. In this study SWAT was evaluated for its applicability in three Louisiana coastal watersheds: the Amite, Tickfaw, and Tangipahoa River watersheds. The model was calibrated with daily discharge from 1976 to 1977 and validated from 1979 to 1999 for the Amite and Tangipahoa and with daily discharge from 1979 to 1989 for the Tickfaw. Deviation of mean discharge and the Nash‐Sutcliffe model efficiency were used to evaluate model behavior. The study found that Manning's roughness coefficient for the main channel, SCS curve number, and soil evaporation compensation factor were the most sensitive parameters for these coastal watersheds. The Manning's roughness coefficient showed the greatest effect on the response time of surface runoff, suggesting the critical role of channel routing in hydrologic modeling for lowland watersheds. The SWAT model demonstrated an excellent performance, with Nash‐Sutcliffe efficiencies of 0.935, 0.940, and 0.960 for calibrations of the Amite, Tickfaw, and Tangipahoa watersheds, respectively, and of 0.851, 0.811, and 0.867 for validations. The modeling results demonstrate that SWAT is capable of simulating hydrologic processes for medium scale to large scale coastal lowland watersheds in Louisiana.  相似文献   

8.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

9.
ABSTRACT: Percent imperviousness is an important parameter in modeling the urban rainfall-runoff process and is usually determined using manual methods such as random sampling or conventional accounting methods. In this study two computerized methods are used for estimating the percent imperviousness of urban watersheds using high altitude remote sensing imagery. These methods include the Laser Image Processing Scanner and the Video-Tape Camera system. Imperviousness is directly estimated in the former method while in the latter it is estimated as a function of the statistics of the responses on emulsions of the imagery. The percent imperviousness computed by utilizing remote sensing imagery was used with the conceptual models of rainfall-runoff models. The models were applied to four urban watersheds and the runoff prediction results indicate that imperviousness determined by using remote sensing imagery was as accurate as that obtained by the manual methods, and that the use of remote sensing imagery requires significantly less time and money.  相似文献   

10.
ABSTRACT: A grid cell geographic information system (GIS) is used to parameterize SPUR, a quasi-physically based surface runoff model in which a watershed is configured as a set of stream segments and contributing areas. GIS analysis techniques produce various watershed configurations by progressive simplification of a stream network delineated from digital elevation models (DEM). We used three watershed configurations: ≥ 2nd, ≥ 4th, and ≥ 13th Shreve order networks, where the watershed contains 28, 15, and 1 channel segments with 66, 37, and 3 contributing areas, respectively. Watershed configuration controls simulated daily and monthly sums of runoff volumes. For the climatic and topographic setting in southeastern Arizona the ≥ 4th order configuration of the stream network and contributing areas produces results that are typically as good as the ≥ 2nd order network. However both are consistently better than the ≥ 13th order configuration. Due to the degree of parameterization in SPUR, model simulations cannot be significantly improved by increasing watershed configuration beyond the ≥ 4th order network. However, a range of Soil Conservation Service curve numbers derived from rainfall/runoff data can affect model simulations. Higher curve numbers yield better results for the ≥ 2nd order network while lower curve numbers yield better results for the ≥ 4th order network.  相似文献   

11.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

12.
ABSTRACT Significant parameters for predicting thunderstorm runoff from small semiarid watersheds are determined using data from the Walnut Gulch watershed in southern Arizona. Based on these data, thunderstorm rainfall is dominant over watershed parameters for predicting runoff from multiple linear regression equations. In some cases antecedent moisture added significantly to the models. A technique is developed for estimating precision of predicted values from multiple linear regression equations. The technique involves matrix methods in estimating the variance of mean predicted values from a regression equation. The estimated variance of the mean predicted value is then used to estimate the variance of an individual predicted value. A computer program is developed to implement these matrix methods and to form confidence limits on predicted values based on both a normality assumption and the Chebyshev inequality.  相似文献   

13.
ABSTRACT: Using a Geographic Information System (GIS), a method is presented to develop a spatially explicit time series of land use in an urbanizing watershed. The method is prefaced on the existence of independent observations of land use at different times and data that describes the spatial‐temporal land use transition characteristics of the watershed between these two points in time. A method is then presented to generalize the TR‐55 graphical method, a common lumped hydrologic model for estimating peak discharge, for use in a spatially explicit scheme. This scheme predicts peak discharge throughout a watershed, rather than at a single selected watershed outlet. Coupling these two methods allows the engineer to model both the temporal and spatial evolution of peak discharge for the watershed. An illustrative watershed in a suburban area of Washington, DC is selected to demonstrate the methods. The model results from these analyses are presented graphically to highlight the complex features in peak discharge behavior that exist both spatially, as a function of position within the watershed drainage network, and temporally, as the watershed undergoes urbanization. These features are not commonly noted in most hydrologic analyses but are captured in these analyses because of the high spatial and temporal resolution of the methods presented. The physical implications of the modeled results are discussed in the context of the information content of a stream gauge located at the overall outlet of the illustrative watershed. This work shows that the common practice of transposition of gauge information to locations internal to the watershed would neglect internal variability in peak discharge behavior, and could potentially lead to the determination of inappropriate design discharges.  相似文献   

14.
ABSTRACT: This paper first discusses the results of sensitivity analyses conducted on various parameters of the San Francisco Stormwater Model ta version of WREM) and the Penn State Runoff Model in terms of their impact on outflow hydrographs. The parameters considered within a idealized catchment include: basin shape, imperivous fraction, overland roughness and slope: deterntion depth; infiltration capacity; and hyetograph timing. Second, the results for the hypothetical catchment are extended to the lazzard laboratory surfaces (asphalt, grass, roofing material) as a mean of illustrating the need for changes in model structure, as opposed to continued parameter adjustment Finally the effect of altering the scale of hydraulic representation in the surface runoff and sewer transport calculations are demonstrated for two gaged watersheds in Hamburg, West Germany.  相似文献   

15.
ABSTRACT: Rainfall runoff of six watersheds was modeled via the Soil Conservation Service runoff curve number model in two ways: conventionally (manually) and via a geographic information system (GIS). Input data (elevation, soils, and landcover) were digital for the latter method. In contrast to previous studies, the GIS was ised for all phases of the modeling process, including watershed delineation and routing of runoff. A comparison between the two methods was consistent with results reported by others and indicates that the use of a GIS is an acceptable alternative to the conventional method for watersheds lacking relatively flat terrain. Given this limitation, the GIS method may prove advantageous over manual methods when study areas are large or numerous, runoff is modeled repetitively, alternative landcover scenarios are explored, or a digital database already exists for the study area.  相似文献   

16.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

17.
ABSTRACT: Removal of streamside vegetation changes the energy balance of a stream, and hence its temperature. A common approach to mitigating the effects of logging on stream temperature is to require establishment of buffer zones along stream corridors. A simple energy balance model is described for prediction of stream temperature in forested headwater watersheds that allows evaluation of the performance of such measures. The model is designed for application to “worst case” or maximum annual stream temperature, under low flow conditions with maximum annual solar radiation and air temperature. Low flows are estimated via a regional regression equation with independent variables readily accessible from GIS databases. Testing of the energy balance model was performed using field data for mostly forested basins on both the west and east slopes of the Cascade Mountains, and was then evaluated using the regional equations for low flow and observed maximum reach temperatures in three different east slope Cascades catchments. A series of sensitivity analyses showed that increasing the buffer width beyond 30 meters did not significantly decrease stream temperatures, and that other vegetation parameters such as leaf area index, average tree height, and to a lesser extent streamside vegetation buffer width, more strongly affected maximum stream temperatures.  相似文献   

18.
ABSTRACT: To alleviate serious flooding problems brought upon by rapid urbanization in the Beargrass Creek watershed, located in Louisville, Kentucky, the U.S. Army Corps of Engineers undertook a major flood study in 1973. In order to predict flood conditions in 1990, the year when the watershed was expected to undergo complete urbanization, trends in the Clark Instantaneous Unit Hydrograph (Clark IUH) parameters were utilized to determine the 1990 unit hydrograph and flood conditions. Based on the results from this flood study, this paper demonstrates the applicability of using projected Clark IUH parameters for modeling future runoff conditions in an urbanizing watershed. Values of these parameters, as estimated from maximum annual historical flood data, are used to develop regression models for predicting future Clark IUH parameters. Using the projected parameters, selected annual flood events since 1973 are simulated in order to verify the accuracy of these projections. Results show a close correspondence between the simulated and observed flood characteristics. Hence, the use of projected Clark IUH parameters is an appropriate procedure for modeling future runoff conditions in an urbanizing watershed.  相似文献   

19.
ABSTRACT: As part of the U.S. Environmental Protection Agency's effort to determine the long-term effects of acidic deposition on surface water chemistry, annual runoff was estimated for about 1000 ungaged sites in the eastern U.S. using runoff contour maps. One concern in using contour maps was that a bias may be introduced in the runoff estimates due to the size of the 1000 ungaged sites relative to the size of the watersheds used in developing the maps. To determine if a bias was present the relationship between the annual runoff (expressed as depth) and the watershed area for the Northeast (NE) and Southern Blue Ridge Province (SBRP) was tested using five regional data bases. One short-term data base (1984 Water Year, n = 531) and two long-term data bases (1940–57, n = 134 and 1951–80, n = 342) were used in the NE. In the SBRP one short-term database (1984 Water Year, n = 531) and one long-term data base (1951–80, n = 60) were used. For the NE and the SBRP, runoff was not directly correlated with watershed area using the five regional databases. Also, runoff normalized by precipitation was not related to watershed area.  相似文献   

20.
ABSTRACT: Using data from 80 Oregon watersheds that ranged in size from 0.54 km2 to 27.45 km2, equations were developed to predict peak flows for use in culvert design on forest roads. Oregon was divided into six physiographic regions based on previous studies of flood frequency. In each region, data on annual peak flow from gaging stations with more than 20 years of record were analyzed using four flood frequency distributions: type 1 extremal, two parameter-log normal, three parameter-log normal, and log-Pearson type III. The log-Pearson type III distribution was found to be suitable for use in all regions of the State, based on the chi-square goodness-of-fit-test. Flood magnitudes having recurrence intervals of 10, 25, 50, and 100 years were related to physical and climatic characteristics of drainage basins by multiple regression. Drainage basin size was the most important variable in explaining the variation of flood peaks in all regions. Mean basin elevation and mean annual precipitation were also significantly related to flood peaks in two regions of western Oregon. The standard error of the estimate for the regression relationships ranged from 26 to 84 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号