首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: A series of flume tests were conducted to determine the flow resistance of angular shaped riprap in steep channels. Flow resistance was expressed in terms of the Darcy-Weisbach friction factor and the Manning's roughness coefficient. Prototype channels of 4 ft. (1.2 m) and 12 ft. (3.7 m) in width were constructed at slopes ranging from 0.01 to 0.20. The channel beds were comprised of angular riprap of median diameters of 1, 2, 4, 5, and 6 inches (2.59, 5.59, 10.41, 12.95, and 15.75 cms). The Darcy-Weisbach and Manning's coefficients were determined for each test condition prior to bed failure. The resulting Darcy-Weisbach coefficients were related to the channel energy gradient and the bed relative submergence for highly turbulent flow. Also, Manning's roughness coefficients were related to the product of the median stone diameter and energy gradient. Because of the angular shape of the riprap and the wedging and/or packing of the bed materials, the resistance to flow was found to exceed the flow resistance values predicted by previous studies. Expressions were presented for estimating the resistance to flow for angular riprap in steep channels.  相似文献   

2.
ABSTRACT: We tracked vegetation succession on a debris‐flow deposit in Oregon's Coast Range to examine factors influencing the development of riparian plant communities following disturbance. Plots were stratified across five areas of the deposit (bank slump, seep, upper and lower sediment wedge, log jam) the first growing season after debris flow. At six times during the next ten years we estimated cover of vascular plants and tallied density of woody plants. Plant colonization occurred within two years. Total cover increased two‐to seven‐fold on the five areas within three years. Red alder and salmonberry were the dominant species, although weedy herbs persisted where woody species were lacking. Ordination of cover data showed that the five areas remained floristically distinct over time, while undergoing similar shifts related to the increasing dominance of alder and salmonberry. Rapid height growth of alder allowed it to outcompete salmonberry and effectively capture most areas by the tenth year, even where sprouts from transported rhizomes gave salmonberry an early advantage. Our results suggest that successional patterns were influenced by substrate variability, species composition of initial colonizers, propagule sources and their distribution, and species life‐history traits such as growth rate, competitive ability, and shade tolerance.  相似文献   

3.
Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150–200 m2. Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6–7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m2 at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites.  相似文献   

4.
The effect of stream geomorphology, maturity, and management of riparian forests on abundance, role, and mobility of wood was evaluated in 20 contrasting reaches in the Agüera stream catchment (northern Iberian Peninsula). During 1 year the volume of woody debris exceeding 1 cm in diameter was measured in all reaches. All large woody debris (φ > 5 cm) pieces were tagged, their positions mapped, and their subsequent changes noted. Volume of woody debris was in general low and ranged from 40 to 22,000 cm3 m−2; the abundance of debris dams ranged from 0 to 5.5 per 100 m of channel. Wood was especially rare and unstable in downstream reaches, or under harvested forests (both natural or plantations). Results stress that woody debris in north Iberian streams has been severely reduced by forestry and log removal. Because of the important influence of woody debris on structure and function of stream systems, this reduction has likely impacted stream communities. Therefore, efforts to restore north Iberian streams should include in-channel and riparian management practices that promote greater abundance and stability of large woody debris whenever possible.  相似文献   

5.
ABSTRACT: The routing of flood waves through the Central Basin of the Passaic River in New Jersey is complex because of flat gradients and flow reversals. The one-dimensional unsteady flow program DWOPER, developed by the National Weather Service, was used to simulate flood wave movement through the Basin. A historical event was used for calibration and two synthetic events were simulated. Boundary conditions consisted of discharge hydrographs at inflow points to the study area, local flow hydrographs at interior points, and a stage discharge relation for flow over the crest of a diversion dam at the basin outlet. Manning's n values were adjusted based on stage and discharge data for the historical event; however, verification data were not available for events comparable in magnitude to the synthetic events. Aspects of the investigation reported include techniques for characterizing the flow system, model calibration, techniques for representing a tunnel diversion, and simulation results.  相似文献   

6.
Manning's equation is used widely to predict stream discharge (Q) from hydraulic variables when logistics constrain empirical measurements of in‐bank flow events. Uncertainty in Manning's roughness (nM) is the major source of error in natural channels, and sand‐bed streams pose difficulties because flow resistance is affected by flow‐dependent bed configuration. Our study was designed to develop and validate models for estimating Q from channel geometry easily derived from cross‐sectional surveys and available GIS data. A database was compiled consisting of 484 Q measurements from 75 sand‐bed streams in Alabama, Georgia, South Carolina, North Carolina (Southeastern Plains), and Florida (Southern Coastal Plain), with six New Zealand streams included to develop statistical models to predict Q from hydraulic variables. Model error characteristics were estimated with leave‐one‐site‐out jackknifing. Independent data of 317 Q measurements from 55 Southeastern Plains streams indicated the model (Q = AcRH0.6906S0.1216; where Ac is the channel area, RH is the hydraulic radius, and S is the bed slope) best predicted Q, based on Akaike's information criterion and root mean square error. Models also were developed from smaller Q range subsets to explore if subsets increased predictive ability, but error fit statistics suggested that these were not reasonable alternatives to the above equation. Thus, we recommend the above equation for predicting in‐bank Q of unbraided, sandy streams of the Southeastern Plains.  相似文献   

7.
ABSTRACT: In recent years, logs and other structures have been added to streams for the purposes of altering channel morphology to improve fish habitat. This flume study was conducted to evaluate the effects of coarse woody debris on local channel morphology. Wooden dowels were used to simulate the effects of individual logs in a stream, and scour depth and surface area were determined at the end of each test run. The maximum scour depth was significantly correlated (90 percent confidence level) with both the vertical orientation of the dowels and the channel opening ratio; the scour surface area was significantly correlated (90 percent confidence level) with both the flow depth and the vertical orientation. Upstream-oriented dowels caused relatively large streambed scour and also deflected flows toward the streambank. Downstream-oriented dowels generally caused less bed scour and appeared to provide better bank protection because flow was generally deflected from the bank. In conjunction with data from field studies, these results provide information on the effects of orientation, hydraulic function, and relative stability of coarse woody debris in streams.  相似文献   

8.
ABSTRACT: Forty‐six independent stream reaches in southeastern Pennsylvania were surveyed to assess the relationships between geomorphic and habitat variables and watershed total impervious area (TIA) and to test the ability of the impervious cover model (ICM) to predict the impervious category based on stream reach variables. Ten variables were analyzed using simple and multivariate statistical techniques including scatter‐plots, Spearman's Rank correlations, principal components analysis (PCA), and discriminant analysis (DA). Graphical analysis suggested differences in the response to TIA between the stream reaches with less than 13 percent TIA and those with greater than 24 percent TIA. Spearman's Rank correlations showed significant relationships for large woody debris and sinuosity when analyzing the entire dataset and for depth diversity and the standard deviation of maximum pool depths when analyzing stream reaches with greater than 24 percent TIA. Classification into the ICM using DA was 49 percent accurate; however, the stream reaches did support the ICM in other ways. These results indicate that stream reach response to urbanization may not be consistent across geographical regions and that local conditions (specifically riparian buffer vegetation) may significantly affect channel response; and the ICM, used in the appropriate context, can aid in the management of stream reaches and watersheds.  相似文献   

9.
ABSTRACT: An extensive group of datasets was analyzed to examine factors affecting widths of streams and rivers. Results indicate that vegetative controls on channel size are scale dependent. In channels with watersheds greater than 10 to 100 km2, widths are narrower in channels with thick woody bank vegetation than in grass lined or nonforested banks. The converse is true in smaller streams apparently due to interactions between woody debris, shading, understory vegetation, rooting characteristics, and channel size. A tree based statistical method (regression tree) is introduced and tested as a tool for identifying thresholds of response and interpreting interactions between variables. The implications of scale dependent controls on channel width are discussed in the context of stable channel design methods and development of regional hydraulic geometry curves.  相似文献   

10.
Anecdotal information suggests that woody debris have had an important channel-forming role in Swedish streams and rivers, but there are few data to support this view. We identified 10 streams within near-natural and 10 streams within managed forest landscapes in central Sweden, and quantified their channel characteristics and content of woody debris. All pieces of woody debris greater than 0.5 m in length and greater than 0.05 m in base diameter were included. The near-natural forests were situated in reserves protected from forest cutting, whereas the managed forests had previously faced intensive logging in the area adjacent to the stream. The two sets of streams did not differ in general abiotic characteristics such as width, slope, or boulder cover, but the number of wood pieces was twice as high and the wood volume almost four times as high in the near-natural streams. This difference resulted in a higher frequency of debris dams in the near-natural streams. Although the total pool area did not differ between the two sets of streams, the wood-formed pools were larger and deeper, and potentially ecologically more important than other pools. In contrast to what has been believed so far, woody debris can be a channel-forming agent also in steeper streams with boulder beds. In a stepwise multiple regression analysis, pool area was positively and most strongly related to the quantity of woody debris, whereas channel gradient and wood volume were negatively related. The frequency of debris dams increased with the number of pieces of woody debris, but was not affected by other variables. The management implications of this study are that the wood quantity in streams in managed forests would need to be increased if management of streams will target more pristine conditions.  相似文献   

11.
The clearance of indigenous riparian vegetation and removal of large woody debris (LWD) from streams combined with the planting of exotic plant species has resulted in widespread detrimental impacts on the fluvial geomorphology and aquatic ecology of Australian rivers. Vegetation exerts a significant influence on fluvial geomorphology by affecting resistance to flow, bank strength, sediment storage, bed stability and stream morphology and is important for aquatic ecosystem function. As the values of indigenous riparian vegetation are becoming better recognised by Australian river managers, large amounts of money and resources are being invested in the planting of indigenous riparian vegetation as part of river rehabilitation programs. This paper summarises the results of an investigation into the survival, growth and regeneration rates of a series of trial native riparian vegetation plantings on in-channel benches in the Hunter Valley of southeastern Australia. The trials were poorly designed for statistical analysis and the paper highlights a number of shortcomings in the methods used. As a result, a new approach to riparian vegetation rehabilitation is outlined that promotes the use of scientific principles and understanding. Appropriate species should be selected using a combination of remnant vegetation surveys, historical records, palynology and field trials. A number of important factors should be considered in the rehabilitation of riparian vegetation to achieve worthwhile results. These include flood disturbance, vegetation zonation, vegetation succession, substrate composition, corridor planting width, planting techniques, native plant regeneration, LWD recruitment and adaptive ecosystem management. This approach, if adopted, revised and improved by river managers, should result in greater success than has been achieved by previous riparian vegetation rehabilitation efforts in Australia.  相似文献   

12.
Chongming, the world’s largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai’s urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.  相似文献   

13.
近年来,随着社会经济的发展,人类工程活动频繁,泥石流地质灾害在我市每年新增灾害中占有相当大的比重,严重威胁着人民的生命财产安全。秦皇岛市泥石流主要发育在北部低山丘陵区,规模小,危害大。通过对泥石流发育特征的研究,阐明其形成条件与地形、地质环境、植被和降雨等因素的关系,并据此提出了群测群防,加强采矿活动正确管理、工程治理等防治措施。  相似文献   

14.
Abstract: Roots of riparian vegetation increase streambank erosion resistance and structural stability; therefore, knowledge of root density and distribution in streambanks is useful for stream management and restoration. The objective of this study was to compare streambank root distributions for herbaceous and woody vegetation and to develop empirical models to predict root density. Root length density, root volume ratio, soil physical and chemical properties, and above‐ground vegetation densities were measured at 25 sites on six streams in southwestern Virginia. The Mann‐Whitney test was used to determine differences in root density along stream segments dominated by either woody or herbaceous vegetation. Multiple linear regression was used to develop relationships between root density and site characteristics. Study results showed that roots were evenly distributed across the bank face with the majority of roots having diameters less than 2 mm. Soil bulk density and above‐ground vegetation were key factors influencing root density. While significant relationships were developed to predict root density, the predictive capabilities of the equations was low. Because of the highly variable nature of soil and vegetation properties, it is recommended at this time that soil erodibility and root density be measured in the field for design and modeling purposes, rather than estimated based on empirical relationships.  相似文献   

15.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) has been used for hydrologic analyses at various watershed scales. However, little is known about the model's performance in coastal watersheds. In this study SWAT was evaluated for its applicability in three Louisiana coastal watersheds: the Amite, Tickfaw, and Tangipahoa River watersheds. The model was calibrated with daily discharge from 1976 to 1977 and validated from 1979 to 1999 for the Amite and Tangipahoa and with daily discharge from 1979 to 1989 for the Tickfaw. Deviation of mean discharge and the Nash‐Sutcliffe model efficiency were used to evaluate model behavior. The study found that Manning's roughness coefficient for the main channel, SCS curve number, and soil evaporation compensation factor were the most sensitive parameters for these coastal watersheds. The Manning's roughness coefficient showed the greatest effect on the response time of surface runoff, suggesting the critical role of channel routing in hydrologic modeling for lowland watersheds. The SWAT model demonstrated an excellent performance, with Nash‐Sutcliffe efficiencies of 0.935, 0.940, and 0.960 for calibrations of the Amite, Tickfaw, and Tangipahoa watersheds, respectively, and of 0.851, 0.811, and 0.867 for validations. The modeling results demonstrate that SWAT is capable of simulating hydrologic processes for medium scale to large scale coastal lowland watersheds in Louisiana.  相似文献   

16.
We studied stormwater detention basins where woody vegetation removal was suspended for 2 years in Virginia, USA to determine if woody vegetation can control Typha populations and how early woody plant succession interacts with Typha, other herbaceous vegetation, and site factors. Distribution and composition of woody vegetation, Typha and non-Typha herbaceous vegetation biomass, and site factors were assessed at 100 plots in four basins ranging in age from 7 to 17 years. A greenhouse study examined the interaction of shade and soil moisture on Typha biomass and persistence. Principal component analysis identified an environmental gradient associated with greater water table depths and decreased elevation that favored Typha but negatively influenced woody vegetation. Elevation was correlated with litter layer distribution, suggesting that initial topography influences subsequent environmental characteristics and thus plant communities. Soil organic matter at 0–10 cm ranged from 5.4 to 12.7 %. Woody plants present were native species with the exception of Ailanthus altissima and Pyrus calleryana. In the greenhouse, shade and reduced soil moisture decreased Typha biomass and rhizome length. The shade effect was strongest in flooded plants and the soil moisture effect was strongest for plants in full sun. Typha in dry soil and heavy shade had 95 % less total biomass and 83 % smaller rhizomes than Typha in flooded soil and full sun, but even moderate soil moisture reductions decreased above- and below-ground biomass by 63 and 56 %, respectively. Suspending maintenance allows restoration of woody vegetation dominated by native species and may suppress Typha invasion.  相似文献   

17.
An experimental three-dimensional finite-difference watershed model in the form of a Fortran IV program was constructed. The model was an oversimplified one which divided the watershed volume into layers of cells which represented the overland flow, the vadose, and the phreatic zones. Water budget equations which utilized such formulas as Darcy's law and Manning's equation were applied to each interior cell. The resulting set of simultaneous equations was solved for heads at the end of successive time increments. This information was transformed to streamflow and other hydrologic output. Input was weather data, which effected appropriate adjustments in the cells representing the surface-water and vadose zones. After testing the model, it was concluded that this type of model is undesirably sensitive to cell size and length of time increment. In spite of the deficiencies of this primitive model, this general kind of approach to modeling seems promising, but it may be necessary to devise new transport equations which apply to more natural divisions of watersheds.  相似文献   

18.
Channel roughness, often described by Manning's n, is used to represent the amount of resistance that flow encounters, and has direct implications on velocity and discharge. Ideally, n is calculated from a long‐term record of channel discharge and hydraulic geometry. In the absence of these data, a combination of photo references and a validated qualitative method is preferable to simply choosing n arbitrarily or from a table. The purpose of this study was to use United States Geological Survey (USGS) streamflow data to calculate roughness coefficients for streams in the mountains of North Carolina. Five USGS gage stations were selected for this study, representing drainage areas between 71.5 and 337 km2. Photo references of the study sites are presented. Measured discharges were combined with hydraulic geometry at a cross‐section to calculate roughness coefficients for flows of interest. At bankfull flow, n ranged between 0.039 and 0.064 for the five study sites. Roughness coefficients were not constant for all flows in a channel, and fluctuated over a large range. At all sites, roughness was highest during low‐flow conditions, then quickly decreased as flow increased, up to the bankfull elevation.  相似文献   

19.
ABSTRACT: A palustrine water tupelo (Nyssa aquatica L.)-baldcy-press (Taxodium distichum (L.) Rich.) swamp in southwestern Alabama was subjected to three types of disturbance, including helicopter logging, rubber-tired skidder logging simulation, and helicopter logging followed by an herbicide application. An adjacent undisturbed stand served as a control area. Post-harvest collection of sedimentation data revealed that the herbaceous and woody vegetation regrowth within the helicopter and skidded clearcut areas trapped more sediments than did the control or herbicide treatment areas. Clearcutting, followed by plant regrowth, improved the wet-land's capacity to remove sediments from overbank flow flood waters.  相似文献   

20.
Channel changes from 1919 to 1989 were documented in two study reaches of the Merced River in Yosemite National Park through a review of historical photographs and documents and a comparison of survey data. Bank erosion was prevalent and channel width increased an average of 27% in the upstream reach, where human use was concentrated. Here, trampling of the banks and riparian vegetation was common, and banks eroded on straight stretches as frequently as on meander bends. Six bridges in the upper reach constrict the channel by an average of 38% of the original width, causing severe erosion. In the downstream control reach, where human use was minimal, channel widths both decreased and increased, with a mean increase of only 4% since 1919. Bank erosion in the control reach occurred primarily on meander bends. The control reach also had denser stands of riparian vegetation and a higher frequency of large woody debris in channels. There is only one bridge in the lower reach, located at the downstream end. Since 1919, bank erosion in the impacted upstream reach contributed a significant amount of sediment (74,800 tonnes, equivalent to 2.0 t/km2/yr) to the river. An analysis of 75 years of precipitation and hydrologic records showed no trends responsible for bank erosion in the upper reach. Sediment input to the upper reach has not changed significantly during the study period. Floodplain soils are sandy, with low cohesion and are easily detached by lateral erosion. The degree of channel widening was positively correlated with the percentage of bare ground on the streambanks and low bank stability ratings. Low bank stability ratings were, in turn, strongly associated with high human use areas. Channel widening and bank erosion in the upper reach were due primarily to destruction of riparian vegetation by human trampling and the effect of bridge constrictions on high flow, and secondarily to poorly installed channel revetments. Several specific recommendations for river restoration were provided to park management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号