共查询到20条相似文献,搜索用时 15 毫秒
1.
Co-occurring foundation species can determine biological community structure via facilitation cascades. We examined the density dependencies of facilitation cascades, including how the density of a basal foundation species influences the density of secondary foundation species, and how the density of secondary foundation species influences community structure. The system in which we assessed density dependencies was a temperate mangrove forest in which pneumatophores trap the fucoid alga Hormosira banksii and provide substrate for the oyster, Saccostrea glomerata. The alga and oyster in turn determine benthic community structure. In the field, algal biomass was positively correlated with pneumatophore density. Oysters, by contrast, were highly over-dispersed and correlated with the presence/absence of pneumatophores. Epifaunal abundance and species richness were positively correlated with algal and oyster abundance, but their effects were independent. The positive effect of pneumatophore density on epifauna was primarily an indirect effect of trapping more algae. Pneumatophores did not directly influence invertebrate communities. Experiments revealed that, at very low pneumatophore densities, algal retention was insufficient to facilitate epifauna above that found on pneumatophores alone. At higher densities, however, increasing the density of pneumatophores increased algal retention, and the density and diversity of associated invertebrates. Shading by the mangrove canopy reduced algal biomass but did not modify the density-dependent nature of the cascade. Our results extend facilitation theory by showing that the density of both basal and secondary foundation species can be critical in triggering facilitation cascades. Our study also reveals that, where foundation species co-occur, multiple, independent cascades may arise from a single basal facilitator. These findings enhance our understanding of the role of density-dependent facilitation cascades in community assembly. 相似文献
2.
Climate, habitat, and species interactions are factors that control community properties (e.g., species richness, abundance) across various spatial scales. Usually, researchers study how a few properties are affected by one factor in isolation and at one scale. Hence, there are few multi-scale studies testing how multiple controlling factors simultaneously affect community properties at different scales. We ask whether climate, habitat structure, or insect resources at each of three spatial scales explains most of the variation in six community properties and which theory best explains the distribution of selected community properties across a rainfall gradient. We studied a Neotropical insectivorous bat ensemble in the Isthmus of Panama with acoustic monitoring techniques. Using climatological data, habitat surveys, and insect captures in a hierarchical sampling design we determined how much variation of the community properties was explained by the three factors employing two approaches for variance partitioning. Our results revealed that most of the variation in species richness, total abundance, and feeding activity occurred at the smallest spatial scale and was explained by habitat structure. In contrast, climate at large scales explained most of the variation in individual species' abundances. Although each species had an idiosyncratic response to the gradient, species richness peaked at intermediate levels of precipitation, whereas total abundance was very similar across sites, suggesting density compensation. All community properties responded in a different manner to the factor and scale under consideration. 相似文献
3.
Species composition,community structure and zoogeography of fishes of mangrove estuaries in the Solomon Islands 总被引:2,自引:0,他引:2
Mangrove estuaries in the Solomon Islands are well developed, but are small and isolated from each other by extensive fringing coral reef lagoons. A total of 136 species of fish were recorded from 13 estuaries (6 estuaries in Kolombangara, 3 in New Georgia, 3 in Rendova and 1 in the Florida Group); none contained more than 50 species. Sampling took place during five 3 wk expeditions from 1986 to 1988. The mean biomass of 11.60 g m–2 is comparable with that of similar estuaries in northern Australia. Cluster-analysis revealed two patterns of fish species composition. The first group, in which Gobiidae were the most numerous taxon, inhabited soft, muddy-bottom estuaries. The second group, dominated by Pomacentridae, lived in hard-bottom, log-strewn estuaries. The role of the estuaries as nursery grounds for coral reef species was assessed and found to be insignificant, but they are used as feeding grounds by mobile piscivorous species. The species composition of Solomon Island estuaries was compared with that of other Indo-Pacific estuaries. No endemic species were found and the fauna is typical of such mangrove systems throughout the region. However, several taxa that are common in Australia or New Guinea were not found, notably Ariidae, Centropomidae,Pomadasys, and Sciaenidae. These absentees, and the fish fauna as a whole, are discussed in relation to the position of the Solomon Islands at the western edge of the Pacific Plate, the effects of deep-ocean trenches, the recent geological origin of the islands, and possible methods of colonisation from nearby mangroves in Australia and New Guinea. The importance of larval durations and dispersal to colonisation are discussed in relation to oceanic circulation patterns in the Solomon Sea. 相似文献
4.
Spatial clustering of habitat structure effects patterns of community composition and diversity 总被引:1,自引:0,他引:1
Natural ecosystems often show highly productive habitats that are clustered in space. Environmental disturbances are also often nonrandomly distributed in space and are either intrinsically linked to habitat quality or independent in occurrence. Theoretical studies predict that configuration and aggregation of habitat patch quality and disturbances can affect metacommunity composition and diversity, but experimental evidence is largely lacking. In a metacommunity experiment, we tested the effects of spatially autocorrelated disturbance and spatial aggregation of patch quality on regional and local richness, among-community dissimilarity, and community composition. We found that spatial aggregation of patch quality generally increased among-community dissimilarity (based on two measures of beta diversity) of communities containing protozoa and rotifers in microcosms. There were significant interacting effects of landscape structure and location of disturbances on beta diversity, which depended in part on the specific beta diversity measures used. Effects of disturbance on composition and richness in aggregated landscapes were generally dependent on distance and connectivity among habitat patches of different types. Our results also show that effects of disturbances in single patches cannot directly be extrapolated to the landscape scale: the predictions may be correct when only species richness is considered, but important changes in beta diversity may be overlooked. There is a need for biodiversity and conservation studies to consider the spatial aggregation of habitat quality and disturbance, as well as connectivity among spatial aggregations. 相似文献
5.
The objectives of this study were to determine the effects of sediment contamination on the benthic macrofauna and to predict
macrofaunal changes following remediation at a Superfund (uncontrolled hazardous waste) site in San Francisco Bay, California,
USA. DDT and its metabolites (ΣDDT) were the contaminants of concern. With few small-scale exceptions, all (>100) other sediment
contaminants ever measured at the site were present at background or non-toxic levels. In hierarchical regressions [Y=f(X
1, X
2, X
3), where X
1=sediment %silt + clay, X
2=sediment total organic carbon (OC), and X
3=log
10 (ΣDDT μg g−1 OC)] with data from samples collected at the study site, log10(ΣDDT μg g−1 OC) explained a highly significant amount of the variance in the infaunal index (II ) and log10(number of Amphipoda excluding Grandidierella japonica + 1) after statistically controlling for the potential effects of sediment %silt + clay and OC. The ratios of change of II and log10(number of Amphipoda excluding G. japonica + 1) with respect to log10(ΣDDT μg g−1 OC) were about −9:1 and −0.4:1, respectively. Most of the 92 species collected were present at low to moderate densities
over the entire range of ΣDDT sediment concentrations. The bivalve Theora lubrica, tubificids, most polychaetes, a tanaid (Zeuxo normani), and an amphipod (G. japonica), were common, while four other amphipods (Ampelisca abdita, Corophium heteroceratum, Photis brevipes, Dulichia rhabdoplastis), a phoronid (Phoronis cf. pallida), a bivalve (Cryptomya californica), and a cumacean (Eudorella pacifica), were rare or absent from sites with high ΣDDT sediment-concentrations.
Received: 1 August 1997 / Accepted: 13 August 1997 相似文献
6.
Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community. Using natural monocultures of the salt marsh cordgrass Spartina alterniflora, we were able to examine the impacts of increased plant production, independent of changes in plant composition and/or diversity, on the trophic structure, composition, and diversity of the entire arthropod community. If arthropod species richness increased with greater plant production, we predicted that it would be driven by: (1) an increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our results largely supported our predictions: species richness of herbivores, detritivores, predators, and parasitoids increased monotonically with increasing levels of plant production, and the diversity of rare species also increased with plant production. However, rare species that accounted for this difference were predators, parasitoids, and detritivores, not herbivores. Herbivore species richness could be simply explained by the relationship between abundance and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM), we also found significant changes in arthropod species composition with increasing levels of production. Our findings have important implications in the intertidal salt marsh, where human activities have increased nitrogen runoff into the marsh, and demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and abundance in higher trophic levels. 相似文献
7.
Plant succession is one of many factors that may affect the composition and structure of herbivorous insect communities. However, few studies have examined the effect of forest age on the diversity and abundance of insect communities. If forest age influences insect diversity, then the schedule of timber harvest rotation may have consequent effects on biodiversity. The insect herbivore community on Quercus alba (white oak) in the Missouri Ozarks was sampled in a chronoseries, from recently harvested (2 yr) to old-growth (approximately 313 yr) forests. A total of nine sites and 39 stands within those sites were sampled in May and August 2003. Unique communities of plants and insects were found in the oldest forests (122-313 yr). Density and species richness of herbivores were positively correlated with increasing forest age in August but not in May. August insect density was negatively correlated with heat load index; in addition, insect density and richness increased over the chronoseries, but not on the sunniest slopes. Forest structural diversity (number of size classes) was positively correlated with forest age, but woody plant species richness was not. In sum, richness, density, and community structure of white oak insect herbivores are influenced by variation in forest age, forest structure, relative abundance of plant species, and abiotic conditions. These results suggest that time between harvests of large, long-lived, tree species such as white oak should be longer than current practice in order to maintain insect community diversity. 相似文献
8.
To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community diversity influenced colonization by the biennial composite Senecio jacobaea in its native range in The Netherlands in Europe. We tested the effect of sowing later-succession plant species (0, 4, or 15 species) on plant succession and S. jacobaea performance. Over a period of eight years, the percent cover of S. jacobaea was relatively low in communities sown with 15 or 4 later-succession plant species compared to plots that were not sown, but that were colonized naturally. However, after four years of high abundance, the density of S. jacobaea in unsown plots started to decline, and the size of the individual plants was smaller than in the plots sown with 15 or 4 plant species. In the unsown plots, densities of aboveground leaf-mining, flower-feeding, and stem-boring insects on S. jacobaea plants were lower than on plants in sown plots, and there was a strong positive relationship between plant size and levels of herbivory. In a greenhouse experiment, we grew S. jacobaea in sterilized soil inoculated with soil from the different sowing treatments of the field experiment. Biomass production was lower when S. jacobaea test plants were grown in soil from the unsown plots than in soil from the sown plots (4 or 15 species). Molecular analysis of the fungal and bacterial communities revealed that the composition of fungal communities in unsown plots differed significantly from those in sown plots, suggesting that soil fungi could have been involved in the relative growth reduction of S. jacobaea in the greenhouse bioassay. Our results show that, in its native habitat, the abundance of S. jacobaea depends on the initial composition of the plant community and that, on a scale of almost a decade, its interactions with plant and soil communities and aboveground invertebrates may influence the dynamics of this colonizing species. 相似文献
9.
Long-term patterns in tropical reforestation: plant community composition and aboveground biomass accumulation. 总被引:1,自引:0,他引:1
Primary tropical forests are renowned for their high biodiversity and carbon storage, and considerable research has documented both species and carbon losses with deforestation and agricultural land uses. Economic drivers are now leading to the abandonment of agricultural lands, and the area in secondary forests is increasing. We know little about how long it takes for these ecosystems to achieve the structural and compositional characteristics of primary forests. In this study, we examine changes in plant species composition and aboveground biomass during eight decades of tropical secondary succession in Puerto Rico, and compare these patterns with primary forests. Using a well-replicated chronosequence approach, we sampled primary forests and secondary forests established 10, 20, 30, 60, and 80 years ago on abandoned pastures. Tree species composition in all secondary forests was different from that of primary forests and could be divided into early (10-, 20-, and 30-year) vs. late (60- and 80-year) successional phases. The highest rates of aboveground biomass accumulation occurred in the first 20 years, with rates of C sequestration peaking at 6.7 +/- 0.5 Mg C x ha(-1) x yr(-1). Reforestation of pastures resulted in an accumulation of 125 Mg C/ha in aboveground standing live biomass over 80 years. The 80 year-old secondary forests had greater biomass than the primary forests, due to the replacement of woody species by palms in the primary forests. Our results show that these new ecosystems have different species composition, but similar species richness, and significant potential for carbon sequestration, compared to remnant primary forests. 相似文献
10.
Scale-dependent interaction of fire and grazing on community heterogeneity in tallgrass prairie 总被引:1,自引:0,他引:1
Natural disturbances affect spatial and temporal heterogeneity in plant communities, but effects vary depending on type of disturbance and scale of analysis. In this study, we examined the effects of fire frequency (1-, 4-, and 20-yr intervals) and grazing by bison on spatial and temporal heterogeneity in species composition in tallgrass prairie plant communities. Compositional heterogeneity was estimated at 10-, 50-, and 200-m2 scales. For each measurement scale, we used the average Euclidean Distance (ED) between samples within a year (2000) to measure spatial heterogeneity and between all time steps (1993-2000) for each sample to measure temporal heterogeneity. The main effects of fire and grazing were scale independent. Spatial and temporal heterogeneity were lowest on annually burned sites and highest on infrequently burned (20-yr) sites at all scales. Grazing reduced spatial heterogeneity and increased temporal heterogeneity at all scales. The rate of community change over time decreased as fire frequency increased at all scales, whereas grazing had no effect on rate of community change over time at any spatial scale. The interactive effects of fire and grazing on spatial and temporal heterogeneity differed with scale. At the 10-m2 scale, grazing increased spatial heterogeneity in annually burned grassland but decreased heterogeneity in less frequently burned areas. At the 50-m2 scale, grazing decreased spatial heterogeneity on 4-yr burns but had no effect at other fire frequencies. At the 10-m scale, grazing increased temporal heterogeneity only on 1- and 20-yr burn sites. Our results show that the individual effects of fire and grazing on spatial and temporal heterogeneity in mesic prairie are scale independent, but the interactive effects of these disturbances on community heterogeneity change with scale of measurement. These patterns reflect the homogenizing impact of fire at all spatial scales, and the different frequency, intensity, and scale of patch grazing by bison in frequently burned vs. infrequently burned areas. 相似文献
11.
Mesozooplankton community structure, abundance and biomass in the central Arctic Ocean 总被引:5,自引:0,他引:5
During the "International Arctic Ocean Expedition 1991" (20 August-21 September 1991) mesozooplankton was sampled at six stations in the Nansen, Amundsen and Makarov Basins of the central Arctic Ocean from 1,500 m depth to the surface by multiple opening/closing net hauls. Total mesozooplankton abundance decreased from 268 ind. m-3 in the surface layer (0-50 m) to <25 ind. m-3 below 200 m depth. The small copepods Oithona similis and Microcalanus pygmaeus, as well as copepod nauplii, were most abundant close to the surface, while Oncaea borealis and Spinocalanus spp. frequently occurred at greater depth. Mesozooplankton dry mass (DM) integrated over the upper 1,500 m of the water column was surprisingly stable throughout the investigation area and measured 2.0ǂ.3 g DM m-2. Dry mass in the upper 50 m measured 20.9 mg m-3 and was dominated by Calanus hyperboreus (57.4%) and C. glacialis (21.1%). C. finmarchicus was very abundant only in the Nansen Basin. Below 200 m the calanoid copepods Metridia longa, Microcalanus pygmaeus and Pareuchaeta spp., the decapod Hymenodora glacialis and chaetognaths of the genus Eukrohnia were the principal contributors to biomass values of <1 mg DM m-3. Hence, vertical changes in abundance, biomass and species composition were much more pronounced than regional differences between the basins. Three different mesozooplankton communities were differentiated according to their faunistic composition and are discussed in context with the major water masses: Polar Surface Water, Atlantic Layer and Arctic Deep Water. 相似文献
12.
Beaver–willow (Castor-Salix) communities are a unique and vital component of healthy wetlands throughout the Holarctic region. Beaver selectively forage willow to provide fresh food, stored winter food, and construction material. The effects of this complex foraging behavior on the structure and function of willow communities is poorly understood. Simulation modeling may help ecologists understand these complex interactions. In this study, a modified version of the SAVANNA ecosystem model was developed to better understand how beaver foraging affects the structure and function of a willow community in a simulated riparian ecosystem in Rocky Mountain National Park, Colorado (RMNP). The model represents willow in terms of plant and stem dynamics and beaver foraging in terms of the quantity and quality of stems cut to meet the energetic and life history requirements of beaver. Given a site where all stems were equally available, the model suggested a simulated beaver family of 2 adults, 2 yearlings, and 2 kits required a minimum of 4 ha of willow (containing about10 stems m−2) to persist in a steady-state condition. Beaver created a willow community where the annual net primary productivity (ANPP) was 2 times higher and plant architecture was more diverse than the willow community without beaver. Beaver foraging created a plant architecture dominated by medium size willow plants, which likely explains how beaver can increase ANPP. Long-term simulations suggested that woody biomass stabilized at similar values even though availability differed greatly at initial condition. Simulations also suggested that willow ANPP increased across a range of beaver densities until beaver became food limited. Thus, selective foraging by beaver increased productivity, decreased biomass, and increased structural heterogeneity in a simulated willow community. 相似文献
13.
Classification and community structure of macrobenthos in the Hampton Roads area,Virginia 总被引:4,自引:0,他引:4
D. F. Boesch 《Marine Biology》1973,21(3):226-244
Benthic macrofauna was sampled by grab at 16 stations in Hampton Roads and the adjacent Elizabeth River, Virginia, USA. Samples were taken in February, May and August. Sampling sites and species were grouped by a classification strategy which basically consisted of the Canberra metric dissimilarity-measure and flexible and group average clustering. Following reallocations, 8 site groups and 16 species groups instructively classified the 47 sites and 93 species considered in the analysis. The sites were grouped into associations on mud, muddy-sand and sand-bottom, and those in the Elizabeth River. Species groupings distinguished a few species most frequent at Elizabeth River or mud and muddy-sand sites, larger numbers of species restricted to muddy-sand and sand or solely to sand sites, ubiquitous species, epifaunal species which were microhabitat-restricted, and seasonal species. An analysis of numerically dominant species in the different associations indicated the relative importance of ubiquitous species and seasonally abundant species. Community-structure statistics (species diversity, species richness and evenness) showed definite spatial and temporal patterns. Diversity was high at sand and muddy-sand sites and low at mud and Elizabeth River sites. This spatial pattern was predominantly one of species richness. At Elizabeth River and mud stations, diversity increased from February to August because of increased evenness, while at sand and muddy-sand stations, diversity peaked in May in response to both high species richness and high evenness. The applicability of community concepts, the causes of substrate specificity, seasonality and species diversity, and the effects of pollution on community structure are discussed.Contribution No. 553, Virginia Institute of Marine Science, Gloucester Point, Virginia, USA. 相似文献
14.
Influence of corallivory, competition, and habitat structure on coral community shifts 总被引:1,自引:0,他引:1
The species composition of coral communities has shifted in many areas worldwide through the relative loss of important ecosystem engineers such as highly branched corals, which are integral in maintaining reef biodiversity. We assessed the degree to which the performance of recently recruited branching corals was influenced by corallivory, competition, sedimentation, and the interactions between these factors. We also explored whether the species-specific influence of these biotic and abiotic constraints helps to explain recent shifts in the coral community in lagoons of Moorea, French Polynesia. Population surveys revealed evidence of a community shift away from a historically acroporid-dominated community to a pocilloporid- and poritid-dominated community, but also showed that the distribution and abundance of coral taxa varied predictably with location in the lagoon. At the microhabitat scale, branching corals grew mainly on dead or partially dead massive Porites ("bommies"), promontories with enhanced current velocities and reduced sedimentation. A demographic study revealed that growth and survival of juvenile Pocillopora verrucosa and Acropora retusa, the two most common branching species of each taxon, were affected by predation and competition with vermetid gastropods. By 24 months of age, 20-60% of juvenile corals suffered partial predation by corallivorous fishes, and injured corals experienced reduced growth and survival. A field experiment confirmed that partial predation by corallivorous fishes is an important, but habitat-modulated, constraint for branching corals. Competition with vermetid gastropods reduced growth of both branching species but unexpectedly also provided an associational defense against corallivory. Overall, the impact of abiotic constraints was habitat-specific and similar for Acropora and Pocillopora, but biotic interactions, especially corallivory, had a greater negative effect on Acropora than Pocillopora, which may explain the local shift in coral community composition. 相似文献
15.
Variation in dissolved organic matter controls bacterial production and community composition 总被引:8,自引:0,他引:8
An ongoing debate in ecology revolves around how species composition and ecosystem function are related. To address the mechanistic controls of this relationship, we manipulated the composition of dissolved organic matter (DOM) fed to aquatic bacteria to determine effects on both bacterial activity and community composition. Sites along terrestrial to aquatic flow paths were chosen to simulate movement of DOM through catchments, and DOM was fed to downslope and control bacterial communities. Bacterial production was measured, and DOM chemistry and bacterial community composition (using denaturing gradient gel electrophoresis of 16S rRNA genes) were characterized following incubations. Bacterial production, dissolved organic carbon (DOC)-specific bacterial production, and DOC consumption were greatest in mesocosms fed soil water DOM; soil water DOM enhanced lake and stream bacterial production by 320-670% relative to lake and stream controls. Stream DOM added to lake bacteria depressed bacterial production relative to lake controls in the early season (-78%) but not the mid-season experiment. Addition of upslope DOM to stream and lake bacterial communities resulted in significant changes in bacterial community composition relative to controls. In four of five DOM treatments, the bacterial community composition converged to the DOM source community regardless of the initial inoculum. These results demonstrate that shifts in the supply of natural DOM were followed by changes in both bacterial production and community composition, suggesting that changes in function are likely predicated on at least an initial change in the community composition. The results indicate that variation in DOM composition of soil and surface waters influences bacterial community dynamics and controls rates of carbon processing in set patterns across the landscape. 相似文献
16.
M. Antonio Todaro Francesca Leasi Nicoletta Bizzarri Paolo Tongiorgi 《Marine Biology》2006,149(5):1079-1091
During the past 5 decades, the large-sized biota inhabiting dark marine caves has attracted the attention of many marine biologists; in contrast, studies concerning the meiofaunal organisms of these peculiar biotopes remain scanty and mostly with a taxonomic aim. In this study, the nature and abundance of meiofaunal taxa living in a Mediterranean, semi-submerged sea cave was surveyed in relation to distance from the entrance and over two different seasonal periods. Particular attention was paid to the Gastrotricha taxocene. Research was carried out in a cave along the Ionian coast of Apulia (southern Italy), the “Grotta Piccola del Ciolo” which opens for approximately 120 m on the north-eastern side of a shallow fjord and has a bottom blanketed by fine to very fine sand, occasionally rich in detritus. Quantitative samples in four replicates were collected by SCUBA diving, in November 2000 and June 2001, coring the sediment with a hand-held piston corer in three light-free sites (stations 1–3) located at increasing distances from the entrance. At each site, two additional 500-ml sediment samples were collected for an in vivo study of the Gastrotricha. Faunistic analysis found a fairly high meiobenthic diversity, identifying representatives of more than 12 major groups, with total abundances ranging from 656 ind./10 cm2 (10 cm2) in November to 1,069 ind./10 cm2 in June. Station 1, the closest to the entrance invariably hosted the most abundant meiofaunal community (851 ind./10 cm2 in November and 1932 ind./10 cm2 in June), followed by station 2 or 3 depending on the season. While nematodes and harpacticoids appear as the most abundant taxa when the cave is considered as a whole, other taxa may prevail numerically in selected stations, e.g. priapulids, which are the second most abundant taxon at station 1 (30 ind./10 cm2 in November and 83 ind./10 cm2 in June). Although the density of total meiofauna and that of the single groups may not be very high, the cave is interesting by virtue of the peculiarity of the hosted fauna, e.g., species and genera new to science or new to the Mediterranean Sea. Regarding the Gastrotricha, we found 16 species, accounting for 1.3–2.6% of the total meiobenthos (density = 8.4 ind./10 cm2 in November and 27.4 ind./10 cm2 in June). Analysis of the gastrotrich community found, particularly in June, an assemblage of taxa quite different from those found in open habitats, even at the family level; differences that are probably due to the exploitation of different food resources by animals populating the two environments, i.e. algae in the open sea versus bacteria in the caves. Results indicate that for meiofauna, as happens for macrofauna, the marine caves may represent hotspots of biodiversity and endemism; the driving forces at the base of the trophic depletion hypothesis seem to be responsible for structuring the meiofauna community inside the cave. 相似文献
17.
Deep-water assemblages of suprabenthic peracarids were analyzed in the SW Balearic Islands (Algerian Basin, southwestern Mediterranean) between 249 and 1,622 m depth; the patterns of species composition, possible zonation, and trophic structure found in this area were compared with those exhibited by peracarids in the mainland side of the Catalan Sea slope (northwestern Mediterranean). One hundred and four peracarid species (plus one leptostracan) were identified on the Balearic Islands slope, amphipods being the most diversified taxon (45 species). On the Balearic slope, two distinct depth assemblages were distinguished: one at the upper slope (US), between 249 and 402 m depth and the second at the deep slope, between 543 and 1,620 m depth. A remarkable species substitution occurred at depths between 402 and 638 m. In the Catalan Sea, in addition to the US assemblage occupying depths between 208 and 408 m, a second boundary of faunal change was found around 1,250 m. Suprabenthos biomass increased from 242 to approximately 500 m. Suprabenthos attained the highest biomass values (100 g wet weight/10,000 m2) at intermediate depths between 504 and 1,211 m, as also occurred with the associated zooplankton collected with suprabenthos (peak biomass between 502 m and 898 m). Suprabenthos biomass did not show any significant correlation with any environmental water-column variable. In contrast, zooplankton (especially small fish and decapod crustaceans) showed a significant positive correlation with fluorometry and turbidity at different levels of the water column. The feeding guilds of species showed important differences between the two areas only on the US, with a higher abundance of deposit feeders in the Catalan Sea (20.4%) than in the Balearic Islands (4.2%). The low contribution of deposit feeders in the SW Balearic Islands may ultimately be a consequence of the lack of river discharges in this area.Communicated by S.A. Poulet, Roscoff 相似文献
18.
Recent studies suggest that nearshore oceanographic conditions can have important effects on the structure of benthic communities. On Santa Cruz Island (SCI), CA, USA there is a persistent difference in mean annual sea surface temperature (SST) around the island due to its location at the confluence of opposing cold and warm ocean current systems. Over the course of a 4-year study (1997–2001) seawater nutrient and chl-a concentrations, algal tissue C:N ratios, recruitment and growth of filter-feeders (barnacles and mussels), and intertidal community structure were measured at six intertidal sites around the island. There were strong associations between remotely sensed SST and patterns of community structure. Macrophyte abundance was highest at sites with persistently low SST, while recruitment, abundance, and growth of filter-feeding invertebrates were strongly, positively correlated with SST. The cold-water sites were associated with higher nutrient concentrations and lower algal C:N ratios, particularly in the winter months. Values of chl-a were generally low and variable among sites, and were not correlated with the predominant SST gradient. Recruitment of barnacles and mussels was positively correlated with adult abundance across all sites. While detailed experimental studies are needed to further evaluate the mechanisms underlying community dynamics, these results indicate that the confluence of cold- and warm-water masses around SCI may determine the contrasting patterns of intertidal community structure. 相似文献
19.
Spatial and temporal pattern in seagrass community composition and productivity in south Florida 总被引:3,自引:1,他引:3
We document the distribution and abundance of seagrasses, as well as the intra-annual temporal patterns in the abundance
of seagrasses and the productivity of the nearshore dominant seagrass (Thalassia testudinum) in the south Florida region. At least one species of seagrass was present at 80.8% of 874 randomly chosen mapping sites,
delimiting 12,800 km2 of seagrass beds in the 17,000-km2 survey area. Halophila decipiens had the greatest range in the study area; it was found to occur over 7,500 km2. The range of T. testudinum was almost as extensive (6,400 km2), followed by Syringodium filiforme (4,400 km2), Halodule wrightii (3,000 km2) and Halophila engelmanni (50 km2 ). The seasonal maxima of standing crop was about 32% higher than the yearly mean. The productivity of T. testudinum was both temporally and spatially variable. Yearly mean areal productivity averaged 0.70 g m−2day−1, with a range of 0.05–3.29 g m−2 day−1. Specific productivity ranged between 3.2 and 34.2 mg g−1 day−1, with a mean of 18.3 mg g−1 day−1. Annual peaks in specific productivity occurred in August, and minima in February. Integrating the standing crop for the
study area gives an estimate of 1.4 × 1011 g T. testudinum and 3.6 × 1010 g S. filiforme, which translate to a yearly production of 9.4 × 1011 g T. testudinum leaves and 2.4 × 1011 g S. filiforme leaves. We assessed the efficacy of rapid visual surveys for estimating abundance of seagrasses in south Florida by comparing
these results to measures of leaf biomass for T. testudinum and S. filiforme. Our rapid visual surveys proved useful for quantifying seagrass abundance, and the data presented in this paper serve as
a benchmark against which future change in the system can be quantified.
Received: 30 January 2000 / Accepted: 24 July 2000 相似文献
20.
Multiple factors linked through complex networks of interaction including fertilization, aboveground biomass, and litter control the diversity of plant communities. The challenge of explaining plant diversity is to determine not only how each individual mechanism directly influences diversity, but how those mechanisms indirectly influence diversity through interactions with other mechanisms. This approach is well established in the study of plant species richness, but surprisingly little effort has been dedicated toward understanding the controls of community evenness, despite the recognition that this aspect of diversity can influence a variety of critical ecosystem functions. Similarly, studies of diversity have predominantly focused on the influence of shoot, rather than root, biomass, despite the fact that the majority of plant biomass is belowground in many natural communities. In this study, I examine the roles of belowground biomass, live aboveground biomass, litter, and light availability in controlling the species richness and evenness of a rough fescue grassland community using structural equation modeling. Litter was the primary mechanism structuring grassland diversity, with both richness and evenness declining with increasing litter cover. There were few relationships between shoot biomass, shading, and diversity, and more importantly, no relationship between root biomass and diversity. The lack of relationship between root biomass and species richness and evenness suggests that, even though root competition in grasslands is intense, belowground interactions may not play an important role in structuring community diversity or composition. 相似文献