首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the groundwater quality is important as it is the main factor determining its suitability for drinking, domestic, agricultural, and industrial purposes. In order to assess the groundwater quality, 30 groundwater samples have been collected in year 2008. The water samples collected in the field were analyzed for electrical conductivity, pH, total dissolved solids (TDS), major cations like calcium, magnesium, sodium, potassium, and anions like bicarbonate, carbonate, chloride, nitrate, and sulfate, in the laboratory using the standard methods given by the American Public Health Association. The groundwater locations were selected to cover the entire study area and attention was been given to the area where contamination is expected. The expected groundwater contaminants were chloride, nitrate, TDS, etc. The results were evaluated in accordance with the drinking water quality standards given by the World Health Organization (WHO 1993). To know the distribution pattern of the concentration of different elements and to demarcate the higher concentration zones, the contour maps for various elements were also generated, discussed, and presented.  相似文献   

2.
Modeling Desertification Change in Minqin County,China   总被引:1,自引:0,他引:1  
Monitoring environmental processes is becoming increasingly important wherever there is increasing population and economic development pressure placed on fragile environments. Remote sensing, digital image processing, and spatial analysis have proven to be useful technologies in both assessing and monitoring environmental change. In this study, they were used to assess desertification processes and change in Minqin County, China from 1988 to 1997. The results suggest that wind erosion was the dominant cause of desertification in more than half of the study area. Coupled with this were increases in salinization processes, affecting 33.62% of the land area in 1997. Overall, moderate desertification was found to be the dominant desertification grade (43.64% of total area), followed by extreme/severe desertification (26.15% of total area) in 1997. In addition, examination of landscape pattern changes indicated that desertification processes at the landscape level were becoming evident at increasing levels of fragmentation, complexity in shape, and isolation of patches. Major fluctuations in desertification type and grade were found at the fringes of oases, where an ongoing shift was taking place between cultivation, abandonment, and reclamation.  相似文献   

3.
The farming and grazing interlocked transitional zone along theGreat Wall in northern Shaanxi Province is particularly vulnerable to desertification due to its fragile ecosystem and intensive human activity. Studies reveal that desertification isboth a natural and anthropogenic process. Four desertificationindicators (vegetative cover, proportion of drifting sand area, desertification rate, and population pressure) were used to assess the severity of desertification in a GIS. The first threefactors were derived from multitemporal remote sensing and landinventory data. The last factor was calculated from census data.It was found that the overall severity of land degradation in thestudy area has worsened during the last two decades with severely, highly and moderately degraded land accounting for 84.2% of the total area in 1998. While the area affected by desertification has increased, the rate of desertification has also accelerated from 0.74 to 0.87%. Risk of land degradation in the study area has increased, on an average, by 155% since 1985. Incorporation of both natural and anthropogenic factors inthe analysis provides realistic assessment of risk of desertification.  相似文献   

4.
基于BP神经网络的齐齐哈尔地区地下水水质评价   总被引:8,自引:0,他引:8  
阐述了人工神经网络基本原理,介绍了BP网络的地下水水质评价模型.在传统的评价方法基础上,根据各评价因子对环境和人类影响程度不同,给水质监测指标分组,从实用角度对水质进行评价.与传统评价方法相比,该评价模型在某评价因子数值极大的情况下,也能准确反映地下水的污染情况,并且通过GIS技术利用评价结果得到地下水水质分布图,从空间反映地下水水质变化规律.  相似文献   

5.
The objective of this study is to develop techniques for assessing and analysing land desertification in Yulin of Northwest China, as a typical monitoring region through the use of remotely sensed data and geographic information systems (GIS). The methodology included the use of Landsat TM data from 1987, 1996 and 2006, supplemented by aerial photos in 1960, topographic maps, field work and use of other existing data. From this, land cover, the Normalised Difference Vegetation Index (NDVI), farmland, woodland and grassland maps at 1:100,000 were prepared for land desertification monitoring in the area. In the study, all data was entered into a GIS using ILWIS software to perform land desertification monitoring. The results indicate that land desertification in the area has been developing rapidly during the past 40 years. Although land desertification has to some extent been controlled in the area by planting grasses and trees, the issue of land desertification is still serious. The study also demonstrates an example of why the integration of remote sensing with GIS is critical for the monitoring of environmental changes in arid and semi-arid regions, e.g. in land desertification monitoring in the Yulin pilot area. However, land desertification monitoring using remote sensing and GIS still needs to be continued and also refined for the purpose of long-term monitoring and the management of fragile ecosystems in the area.  相似文献   

6.
The exploration, exploitation, and unscientific management of groundwater resources in the National Capital Territory (NCT) of Delhi, India have posed a serious threat of reduction in quantity and deterioration of quality. The objective of the study is to determine the groundwater quality and to assess the risk of groundwater pollution at Najafgarh, NCT of Delhi. The groundwater quality parameters were analyzed from the existing wells of the Najafgarh and the thematic maps were generated using geostatistical concepts. Ordinary kriging and indicator kriging methods were used as geostatistical approach for preparation of thematic maps of the groundwater quality parameters such as bicarbonate, calcium, chloride, electrical conductivity (EC), magnesium, nitrate, sodium, and sulphate with concentrations equal or greater than their respective groundwater pollution cutoff value. Experimental semivariogram values were fitted well in spherical model for the water quality parameters, such as bicarbonate, chloride, EC, magnesium, sodium, and sulphate and in exponential model for calcium and nitrate. The thematic maps of all the groundwater quality parameters exhibited an increasing trend of pollution from the northern and western part of the study area towards the southern and eastern part. The concentration was highest at the southernmost part of the study area but it could not reflect correctly the groundwater pollution status. The indicator kriging method is useful to assess the risk of groundwater pollution by giving the conditional probability of concentrations of different chemical parameters exceeding their cutoff values. Thus, risk assessment of groundwater pollution is useful for proper management of groundwater resources and minimizing the pollution threat.  相似文献   

7.
Two non-parametric kriging methods such as indicator kriging and probability kriging were compared and used to estimate the probability of concentrations of Cu, Fe, and Mn higher than a threshold value in groundwater. In indicator kriging, experimental semivariogram values were fitted well in spherical model for Fe and Mn. Exponential model was found to be best for all the metals in probability kriging and for Cu in indicator kriging. The probability maps of all the metals exhibited an increasing risk of pollution over the entire study area. Probability kriging estimator incorporates the information about order relations which the indicator kriging does not, has improved the accuracy of estimating the probability of metal concentrations in groundwater being higher than a threshold value. Evaluation of these two spatial interpolation methods through mean error (ME), mean square error (MSE), kriged reduced mean error (KRME), and kriged reduced mean square error (KRMSE) showed 3.52% better performance of probability kriging over indicator kriging. The combined result of these two kriging method indicated that on an average 26.34%, 65.36%, and 99.55% area for Cu, Fe, and Mn, respectively, are coming under the risk zone with probability of exceedance from a cutoff value is 0.6 or more. The groundwater quality map pictorially represents groundwater zones as ??desirable?? or ??undesirable?? for drinking. Thus the geostatistical approach is very much helpful for the planners and decision makers to devise policy guidelines for efficient management of the groundwater resources so as to enhance groundwater recharge and minimize the pollution level.  相似文献   

8.
Groundwater resource forms a significant component of the urban water supply. Declining groundwater levels in Bangalore Urban District is generally due to continuous overexploitation during the last two decades or more. There is a tremendous increase in demand in the city for good quality groundwater resource. The present study monitors the groundwater quality using geographic information system (GIS) techniques for a part of Bangalore metropolis. Thematic maps for the study area are prepared by visual interpretation of SOI toposheets on 1:50,000 scale using MapInfo software. Physicochemical analysis data of the groundwater samples collected at predetermined locations form the attribute database for the study, based on which spatial distribution maps of major water quality parameters are prepared using MapInfo GIS software. Water quality index was then calculated by considering the following water quality parameters--pH, total dissolved solids, total hardness, calcium hardness, magnesium hardness, alkalinity, chloride, nitrate and sulphate to find the suitability of water for drinking purpose. The water quality index for these samples ranged from 49 to 502. The high value of water quality index reveals that most of the study area is highly contaminated due to excessive concentration of one or more water quality parameters and that the groundwater needs pretreatment before consumption.  相似文献   

9.
The growing population, pollution, and misuse of freshwater worldwide necessitate developing innovative methods and efficient strategies to protect vital groundwater resources. This need becomes more critical for arid/semi-arid regions of the world. The present study focuses on a GIS-based assessment and characterization of groundwater quality in a semi-arid hard-rock terrain of Rajasthan, western India using long-term and multi-site post-monsoon groundwater quality data. Spatio-temporal variations of water quality parameters in the study area were analyzed by GIS techniques. Groundwater quality was evaluated based on a GIS-based Groundwater Quality Index (GWQI). A Potential GWQI map was also generated for the study area following the Optimum Index Factor concept. The most-influential water quality parameters were identified by performing a map removal sensitivity analysis among the groundwater quality parameters. Mean annual concentration maps revealed that hardness is the only parameter that exceeds its maximum permissible limit for drinking water. GIS analysis revealed that sulfate and nitrate ions exhibit the highest (CV?>?30%) temporal variation, but groundwater pH is stable. Hardness, EC, TDS, and magnesium govern the spatial pattern of the GWQI map. The groundwater quality of the study area is generally suitable for drinking and irrigation (median GWQI?>?74). The GWQI map indicated that relatively high-quality groundwater exists in northwest and southeast portions of the study area. The groundwater quality parameter group of Ca, Cl, and pH were found to have the maximum value (6.44) of Optimum Index factor. It is concluded that Ca, Cl, and pH are three prominent parameters for cost-effective and long-term water quality monitoring in the study area. Hardness, Na, and SO4, being the most-sensitive water quality parameters, need to be monitored regularly and more precisely.  相似文献   

10.
Majority of the people of Pakistan get drinking water from groundwater source. Nearly 40 % of the total ailments reported in Pakistan are the result of dirty drinking water. Every summer, thousands of patients suffer from acute gastroenteritis in the Rawal Town. Therefore, a study was designed to generate a water quality index map of the Rawal Town and identify the relationship between bacteriological water quality and socio-economic indicators with gastroenteritis in the study area. Water quality and gastroenteritis patient data were collected by surveying the 262 tubewells and the major hospitals in the Rawal Town. The collected spatial data was analyzed by using ArcGIS spatial analyst (Moran’s I spatial autocorrelation) and geostatistical analysis tools (inverse distance weighted, radial basis function, kriging, and cokriging). The water quality index (WQI) for the study area was computed using pH, turbidity, total dissolved solids, calcium, hardness, alkalinity, and chloride values of the 262 tubewells. The results of Moran’s I spatial autocorrelation showed that the groundwater physicochemical parameters were clustered. Among IDW, radial basis function, and kriging and cokriging interpolation techniques, cokriging showed the lowest root mean square error. Cokriging was used to make the spatial distribution maps of water quality parameters. The WQI results showed that more than half of the tubewells in the Rawal Town were providing “poor” to “unfit” drinking water. The Pearson’s coefficient of correlation for gastroenteritis with fecal coliform was found significant (P?P?P?相似文献   

11.
In recent years, groundwater quality has become a global concern due to its effect on human life and natural ecosystems. To assess the groundwater quality in the Amol–Babol Plain, a total of 308 water samples were collected during wet and dry seasons in 2009. The samples were analysed for their physico-chemical and biological constituents. Multivariate statistical analysis and geostatistical techniques were applied to assess the spatial and temporal variabilities of groundwater quality and to identify the main factors and sources of contamination. Principal component analysis (PCA) revealed that seven factors explained around 75 % of the total variance, which highlighted salinity, hardness and biological pollution as the dominant factors affecting the groundwater quality in the Plain. Two-way analysis of variance (ANOVA) was conducted on the dataset to evaluate the spatio-temporal variation. The results showed that there were no significant temporal variations between the two seasons, which explained the similarity between six component factors in dry and wet seasons based on the PCA results. There are also significant spatial differences (p?>?0.05) of the parameters under study, including salinity, potassium, sulphate and dissolved oxygen in the plain. The least significant difference (LSD) test revealed that groundwater salinity in the eastern region is significantly different to the central and western side of the study area. Finally, multivariate analysis and geostatistical techniques were combined as an effective method for demonstrating the spatial structure of multivariate spatial data. It was concluded that multiple natural processes and anthropogenic activities were the main sources of groundwater salinization, hardness and microbiological contamination of the study area.  相似文献   

12.
The main objective of this study was to statistically evaluate the significance of seasonal groundwater quality change and to provide an assessment on the spatial distribution of specific groundwater quality parameters. The studied area was the Mount Nif karstic aquifer system located in the southeast of the city of Izmir. Groundwater samples were collected at 57 sampling points in the rainy winter and dry summer seasons. Groundwater quality indicators of interest were electrical conductivity (EC), nitrate, chloride, sulfate, sodium, some heavy metals, and arsenic. Maps showing the spatial distributions and temporal changes of these parameters were created to further interpret spatial patterns and seasonal changes in groundwater quality. Furthermore, statistical tests were conducted to confirm whether the seasonal changes for each quality parameter were statistically significant. It was evident from the statistical tests that the seasonal changes in most groundwater quality parameters were statistically not significant. However, the increase in EC values and aluminum concentrations from winter to summer was found to be significant. Furthermore, a negative correlation between sampling elevation and groundwater quality was found. It was shown that with simple statistical testing, important conclusions can be drawn from limited monitoring data. It was concluded that less groundwater recharge in the dry period of the year does not always imply higher concentrations for all groundwater quality parameters because water circulation times, lithology, quality and extent of recharge, and land use patterns also play an important role on the alteration of groundwater quality.  相似文献   

13.
Remote sensing and geographical information system (GIS) has become one of the leading tools in the field of groundwater research, which helps in assessing, monitoring, and conserving groundwater resources. This paper mainly deals with the integrated approach of remote sensing and GIS to delineate groundwater potential zones in hard rock terrain. Digitized vector maps pertaining to chosen parameters, viz. geomorphology, geology, land use/land cover, lineament, relief, and drainage, were converted to raster data using 23 m × 23 m grid cell size. Moreover, curvature of the study area was also considered while manipulating the spatial data. The raster maps of these parameters were assigned to their respective theme weight and class weights. The individual theme weight was multiplied by its respective class weight and then all the raster thematic layers were aggregated in a linear combination equation in Arc Map GIS Raster Calculator module. Moreover, the weighted layers were statistically modeled to get the areal extent of groundwater prospects with respect to each thematic layer. The final result depicts the favorable prospective zones in the study area and can be helpful in better planning and management of groundwater resources especially in hard rock terrains.  相似文献   

14.
This study aims to monitor the arid Algerian High Plateaus, a key region for pastoral activities which has suffered harsh and widespread degradation from the eighties. This area is not sufficiently known by the international scientific community. For this purpose, we considered phytoecological inventories and thematic maps that have been carried out during 30 years. Available data for the study are vegetation maps derived from aerial photographs (1975-1978) and from satellite imagery (2006). The parameters considered include vegetation, flora, and soil surface properties. The study area is part of the ROSELT/OSS (ROSELT: Réseau d'Observatoires de Surveillance Ecologique à Long Terme (Long Term Ecological Monitoring Observatories Network); OSS: Observatory of the Sahara and the Sahel) network observatory (OSS 2008). To assess land degradation, we used landscape ecology parameters. These include the number and surface area of vegetation units, synthesized by the large patch index and the Shannon landscape diversity index. All parameters reflect an increase in landscape heterogeneity. The largest decline is observed for Stipa tenacissima vegetation units constituting 2/3 of the landscape in 1978 and occupied just 1/10 in 2006. Vegetation units linked to degradation, such those dominated by Salsola vermiculata, inexistent in 1978, now dominate the steppe. Another result of the ongoing landscape degradation on the plateaus between 1975 and 2006 is the decrease of vegetation cover. In 1978, 1/3 of rangelands only had low vegetation covers, inferior to 15%. Presently 9/10 present the same class cover. This can be explained by severe spells of drought combined by an exponential rise of livestock during the last 30 years. This has in turn greatly undermined the fodder potential of the steppe. Results suggest that the "greening-up" described by several authors in the Sahel over the last 40 years is not observed in the Algerian, nor in the North African steppes. On the contrary, the desertification is still ongoing and the threshold of irreversibility seems to be imminent.  相似文献   

15.
Vegetation degradation, especially the disappearance of woody vegetation and a diminished grass cover, has aroused the concern of the Maasai community (semi-nomadic pastoralists) of Kajiado District, Kenya. The district is one of Kenya’s arid and semi-arid districts. Over recent years, they have observed their land resources deteriorate due to the desertification process caused by the land use practices of man. They have identified indicators of desertification such as increase of bare lands, which have been invaded by previously unknown grasses and weeds that are of no economic value, and also the disappearance of some useful plant species. It is due to the above concerns that a group of 30 farmers have been very keen to participate in on-farm research to strategize on ways to halt and even reverse the desertification process. The participatory research has identified useful trees that the farmers have been planting around homesteads, as woodlots on their farms to provide woodfuel, shade, and to act as windbreaks. They have also identified species for planting as live fences instead of using thorny tree branches as fencing material, which contributes further to the desertification process. Due to the termite menace on young tree seedlings, the farmers use indigenous knowledge to prepare concoctions using locally available materials, which they apply to planting holes and on seedlings. During awareness campaigns, the farmer research group highlights the need to conserve vegetation resources and also expounds on the concept of planting two trees after one is felled.  相似文献   

16.
As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO3). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.  相似文献   

17.
The groundwater quality assessment for the drinking and irrigation purpose is carried out in the Kandivalasa River Sub Basin covered with khondalitic suite (Garneti ferrous, Sillimanite, Gneiss) of rocks, near Cheepurupalli town of Vizianagaram district, Andhra Pradesh, India. The analysis for the groundwater quality for drinking has shown the slightly alkaline nature and high values of alkalinity in the study area. A very high concentration of total dissolved solids value is observed at one pocket where there has been contamination by many fertilizer industries located nearby the study area. The groundwater is highly affected by the nitrate. Higher fluoride values are obtained at few pockets. Most of the samples in the study area are categorized as very hard category. According to the Piper trilinear diagram, it can be observed that the carbonate hardness and secondary salinity have occupied at major part of study area. From the analysis of sodium adsorption ratio, salinity hazard, sodium percentage, residual sodium carbonate, and Kelly’s ratio, all the groundwater samples except at few locations fell under the category of good to excellent for irrigation. The prepared integrated groundwater quality maps for the drinking purpose and agricultural purposes are indicating that, by and large, the low-lying areas are having poor groundwater quality than the uplands for drinking as well as agricultural needs which means that the groundwater quality of the basin is following the topography.  相似文献   

18.
Development of groundwater quality index   总被引:1,自引:0,他引:1  
Assessing the water quality status for special use is the main objective of any water quality monitoring studies. The water quality index (WQI) is a mathematical instrument used to transform large quantities of water quality data into a single number which represents the water quality level. In fact, developing WQI in an area is a fundamental process in the planning of land use and water resources management. In this study, a simple methodology based on multivariate analysis is developed to create a groundwater quality index (GWQI), with the aim of identifying places with best quality for drinking within the Qazvin province, west central of Iran. The methodology is based on the definition of GWQI using average value of eight cation and anion parameters for 163 wells during a 3-year period. The proportion of observed concentrations to the maximum allowable concentration is calculated as normalized value of each parameter in observing wells. Final indices for each well are calculated considering weight of each parameter. In order to assess the groundwater quality of study area, the derived indices are compared with those of well-known mineral waters. Using developed indices, groundwater iso-index map for study area and the map of areas of which the indices are near to mineral waters was drawn. In the case study, the GWQI map reveals that groundwater quality in two areas is extremely near to mineral water quality. Created index map provides a comprehensive picture of easily interpretable for regional decision makers for better planning and management.  相似文献   

19.
Rapid and unplanned urbanization and industrialization are the main reasons of environmental problems. If urban growth is not based on resource sustainability criteria and urban plans are not applied, natural and human resources are damaged dramatically. In this study, land use change and urban expansion in Edremit region of Turkey is determined by means of remote sensing techniques between 1971 and 2002. To improve the accuracy of land use/cover maps, the contribution of SAR images to optic images in defining land cover types was investigated. To determine the situation of land use/cover types in 2002 accurately, Landsat-5 images and Radarsat-1 images were fused, and the land use/cover types were defined from the fused images. Comparisons with the ground truth reveal that land use maps generated using the fuse technique are improved about 6% with an accuracy of 81.20%. To define land use types and urban expansion, screen digitizing and classification methods were used. The results of the study indicate that the urban areas have been increased 1,826 ha across the agricultural fields which are in land use capability classes of I and II, and significant environmental changes such as land degradation and degeneration of ground water quality occurred.  相似文献   

20.
Our study demonstrates the utility of coarse spatial-resolution satellite spectra for analysis of vegetation phenophases and response to moisture availability in an arid ecosystem. We show the feasibility of deriving information on vegetation parameters such as stress and growth patterns in arid regions through the use of satellite-derived vegetation indices, despite the usual problems associated with a high ratio of soil to vegetation cover. Vegetation in our study area consists of Chihuahuan Desert grassland and scrub, including extensive zones of mixed desert scrub and grassland. Historic vegetation change has been well documented and is exemplified by decreasing grass cover and increasing shrub cover, a general trend of desertification. Our analysis suggests that satellite-based inputs can be used to improve our understanding of the spatial dynamics of climatic impacts on natural vegetation and to help us distinguish these processes from human-caused desertification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号