首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new method was developed to assess the effect of matrix diffusion on contaminant transport and remediation of groundwater in fractured rock. This method utilizes monitoring wells constructed of open boreholes in the fractured rock to conduct backward diffusion experiments on chlorinated volatile organic compounds (CVOCs) in groundwater. The experiments are performed on relatively unfractured zones (called test zones) of the open boreholes over short intervals (approximately 1 meter) by physical isolation using straddle packers. The test zones were identified with a combination of borehole geophysical logging and chemical profiling of CVOCs with passive samplers in the open boreholes. To confirm the test zones are within inactive flow zones, they are subjected to a series of hydraulic tests. Afterward, the test zones are air sparged with argon to volatilize the CVOCs from aqueous to air phase. Backward diffusion is then measured by periodic passive‐sampling of water in the test zone to identify rebound. The passive (nonhydraulically stressed) sampling negates the need to extract water and potentially dewater the test zone. The authors also monitor active flowing zones of the borehole to assess trends in concentrations in other parts of the fractured rock by purge and passive sampling methods. The testing was performed at the former Pease Air Force Base (PAFB) in Portsmouth, New Hampshire. Bedrock at the former PAFB consists of fractured metasedimentary rocks where the authors investigated back diffusion of cis‐1,2‐dichloroethylene (cis‐1,2‐DCE), a CVOC. Postsparging concentrations of cis‐1,2‐DCE showed initial rebounding followed by declines, excluding an episodic spike in concentrations from a groundwater recharge event. The authors theorize that there are three processes that controlled concentration responses in the test zones postsparging. First, the limited back diffusion of CVOCs from a halo or thin zone of rock around the borehole contributes to the initial rebounding. Second, aerobic degradation of cis‐1,2‐DCE occurred causing declines in concentrations in the test zone. Third, microflow from microfractures contributed to the episodic spike in concentrations following the groundwater recharge event. In active flow zones, the latter two processes are not measurable due to equilibration from groundwater transport between the borehole and active flowing fractures.  相似文献   

2.
Emulsified zero‐valent iron (EZVI) is a surfactant‐stabilized, biodegradable emulsion that forms droplets consisting of a liquid‐oil membrane surrounding zero‐valent iron (ZVI) particles in water. This article summarizes the results obtained during the first field‐scale deployment of EZVI at NASA's Launch Complex 34 (LC34) located on Cape Canaveral Air Force Station, Florida, in August 2002 and presents the results of recent follow‐on laboratory tests evaluating the mechanisms, which contribute to the performance of the technology. The field‐scale demonstration evaluated the performance of EZVI containing nanoscale zero‐valent iron (NZVI) when applied to dense, nonaqueous phase liquid (DNAPL) trichloroethylene (TCE) in the saturated zone. Results of the field demonstration indicate substantial reductions in TCE soil concentrations (greater than 80 percent) at all but two soil boring locations and significant reductions in TCE groundwater concentrations (e.g., 60 percent to 100 percent) at all depths targeted with EZVI. Laboratory tests conducted in 2005 suggest that both NZVI particles and EZVI containing NZVI can provide significant reductions in TCE mass when used to treat TCE DNAPL in small test reactors. However, EZVI was able to reduce TCE concentrations to lower levels than were obtained with NZVI alone, likely as a result of the combined impact of sequestration of the TCE into the oil phase and degradation of the TCE with the NZVI. © 2006 Wiley Periodicals, Inc.  相似文献   

3.
Fenton's reagent in its conventional form, although effective for contaminant treatment, is impractical from an in‐situ field application perspective due to low pH requirements (i.e., pH 3‐4), and limited reagent mobility when introduced into the subsurface. Modified Fenton's processes that use chelated‐iron catalysts and stabilized hydrogen peroxide have been developed with the goal of promoting effective in‐situ field application under native pH conditions (i.e., pH 5‐7), while extending the longevity of hydrogen peroxide. Laboratory experiments conducted in soil columns packed with organic soil to compare modified Fenton's catalysts with conventional catalysts (acidified iron [II]) indicated superior mobility and sorption characteristics for modified Fenton's catalysts. Furthermore, the acidic pH of a conventional catalyst was buffered to the native soil range, leading to increased iron precipitation/adsorption following permeation through the soil column. The chelates present within the modified Fenton's catalyst showed greater affinity toward iron compared with the native soil and, hence, minimized iron loss through adsorption during the permeation process even at pH 5‐7. Field effectiveness of the modified Fenton's process was demonstrated at a former dry‐cleaning facility located in northeast Florida. Preliminary laboratory‐scale experiments were conducted on soil‐slurry and groundwater samples to test the process efficacy for remediation of chlorinated solvents. Based on successful experimental results that indicated a 94 percent (soil slurry) to 99 percent (groundwater) reduction of cis‐1,2‐DCE, PCE, and TCE, a field‐scale treatment program was initiated utilizing a plurality of dual‐zone direct push injection points installed in a grid fashion throughout the site. Results of treatment indicated a 72 percent reduction in total chlorinated contamination detected in the site groundwater following the first injection event; the reduction increased to 90 percent following the second injection event. © 2002 Wiley Periodicals Inc.  相似文献   

4.
This study demonstrates a remedial approach for completing the remediation of an aquifer contaminated with 1,1,2‐trichlorotrifluoroethane (Freon‐113) and 1,1,1‐trichloroethane (TCA). In 1987, approximately 13,000 pounds of Freon‐113 were spilled from a tank at an industrial facility located in the state of New York. The groundwater remediation program consisted of an extraction system coupled with airstripping followed by natural attenuation of residual contaminants. In the first phase, five recovery wells and an airstripping tower were operational from April 1993 to August 1999. During this time period over 10,000 pounds of CFC‐13 and 200 pounds of TCA were removed from the groundwater and the contaminant concentrations decreased by several orders of magnitude. However, the efficiency of the remediation system to recover residual Freon and/or TCA reduced significantly. This was evidenced by: (1) low levels (< 10 ppb) of Freon and TCA captured in the extraction wells and (2) a slight increase of Freon and/or TCA in off‐site monitoring wells. A detailed study was conducted to evaluate the alternative for the second‐phase remediation. Results of a two‐year groundwater monitoring program indicated the contaminant plume to be stable with no significant increase or decrease in contaminant concentrations. Monitored geochemical parameters suggest that biodegradation does not influence the fate and transport of these contaminants, but other mechanisms of natural attenuation (primarily sorption and dilution) appear to control the fate and transport of these contaminants. The contaminants appear to be bound to the soil matrix (silty and clay units) with limited desorption as indicated by the solid phase analyses of contaminant concentrations. Results of fate and transport modeling indicated that contaminant concentrations would not exceed the action levels in the wells that showed a slight increase in contaminant concentrations and in the downgradient wells (sentinel) during the modeled timeframe of 30 years. This feasibility study for natural attenuation led to the termination of the extraction system and a transaction of the property, resulting in a significant financial benefit for the original site owner. © 2003 Wiley Periodicals, Inc.  相似文献   

5.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Numerical models were used to simulate alternative funnel‐and‐gate groundwater remediation structures near property corners in hypothetical homogeneous and heterogeneous unconfined aquifers. Each structure comprised a highly permeable central gate (hydraulic conductivity = 25 m/d) and soil‐bentonite slurry walls (hydraulic conductivity = 0.00009 m/d). Gates were perpendicular to regional groundwater flow and approximately 5 m from a contaminant plume's leading tip. Funnel segments collinear to the central gate reached property boundaries; additional funnel segments followed property boundaries in the most hydraulically upgradient direction. Structures were 1 m thick and anchored into the base of the aquifer. Two structures were simulated for each aquifer: one with a 3.0‐m‐long central gate and funnels on either side; and a second with a 1.5‐m‐long central gate, funnels on either side, and 0.75‐m‐long end gates. Funnels were lengthened in successive simulations, until a structure contained a contaminant plume. Results suggest that, for the same total gate length, one‐gate structures may facilitate more rapid remediation, up to 44 percent less time in trials conducted in this study, than multiple‐gate structures constructed near property corners. However, in order to effectively contain a plume, one‐gate structures were up to 46 percent larger than multiple‐gate structures. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
Iron‐Osorb® is a solid composite material of swellable organosilica with embedded nanoscale zero‐valent iron that was formulated to extract and dechlorinate solvents in groundwater. The unique feature of the highly porous organosilica is its strong affinity for chlorinated solvents, such as trichloroethylene (TCE), while being impervious to dissolved solids. The swellable matrix is able to release ethane after dechlorination and return to the initial state. Iron‐Osorb® was determined to be highly effective in reducing TCE concentrations in bench‐scale experiments. The material was tested in a series of three pilot scale tests for in situ remediation of TCE in conjunction with the Ohio Environmental Protection Agency at a site in central Ohio. Results of these tests indicate that TCE levels were reduced for a period of time after injection, then leveled out or bounced back, presumably due to depletion of zero‐valent iron. Use of tracer materials and soil corings indicate that Iron‐Osorb® traveled distances of at least 20 feet from the injection point during soil augmentation. The material appears to remain in place once the injection fluid is diluted into the surrounding groundwater. Overall, the technology is promising as a remediation method to treat dilute plumes or create diffuse permeable reactive barriers. Keys to future implementation include developing injection mechanisms that optimize soil distribution of the material and making the system long‐lasting to allow for continual treatment of contaminants emanating from the soil matrix. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
A common industrial solvent additive is 1,4‐dioxane. Contamination of dissolved 1,4‐dioxane in groundwater has been found to be recalcitrant to removal by conventional, low‐cost remedial technologies. Only costly labor and energy‐intensive pump‐and‐treat remedial options have been shown to be effective remedies. However, the capital and extended operation and maintenance costs render pump‐and‐treat technologies economically unfeasible at many sites. Furthermore, pump‐and‐treat approaches at remediation sites have frequently been proven over time to merely achieve containment rather than site closure. A major manufacturer in North Carolina was faced with the challenge of cleaning up 1,4‐dioxane and volatile organic compound–impacted soil and groundwater at its site. Significant costs associated with the application of conventional approaches to treating 1,4‐dioxane in groundwater led to an alternative analysis of emerging technologies. As a result of the success of the Accelerated Remediation Technologies, LLC (ART) In‐Well Technology at other sites impacted with recalcitrant compounds such as methyl tertiarybutyl ether, and the demonstrated success of efficient mass removal, an ART pilot test was conducted. The ART Technology combines in situ air stripping, air sparging, soil vapor extraction, enhanced bioremediation/oxidation, and dynamic subsurface groundwater circulation. Monitoring results from the pilot test show that 1,4‐dioxane concentrations were reduced by up to 90 percent in monitoring wells within 90 days. The removal rate of chlorinated compounds from one ART well exceeded the removal achieved by the multipoint soil vapor extraction/air sparging system by more than 80 times. © 2005 Wiley Periodicals, Inc.  相似文献   

9.
A three‐dimensional stochastic groundwater flow and contaminant transport model has been developed to optimize groundwater containment at an industrial site in Italy and to define likely future contaminant distribution under different confinement or remediation scenarios. The transport model was first calibrated using a deterministic approach to simulate the hydrochemical conditions prior to the optimization of groundwater extraction, then a probabilistic simulation was conducted to predict future contaminant concentrations. The stochastic approach allowed introducing an estimate of the uncertainty of the hydrogeological and chemical parameters into the model, simulating the probability density function of the contaminant concentrations after the application of the optimized barrier wells pumping rates. This allowed the calculation of the time required for the concentrations of each modeled parameter to decrease to under the regulatory limit at the compliance point, and associating the related uncertainty into the model. Quantifying the model prediction uncertainty facilitated a better understanding of the site environmental conditions, providing the site owners additional information for managing the site and allocating related economic resources. ©2016 Wiley Periodicals, Inc.  相似文献   

10.
1,4‐Dioxane, a common co‐contaminant with chlorinated solvents, is present in groundwater at Site 24 at Vandenberg Air Force Base in California. Historical use of chlorinated solvents resulted in concentrations of 1,4‐dioxane in groundwater up to approximately 2,000 μg/L. Starting in 2013, an in situ propane biosparge system operation demonstrated reductions in 1,4‐dioxane concentrations in groundwater. The work detailed herein extends the efforts of the first field demonstration to a second phase and confirms the biodegradation mechanism via use of stable isotope probing (SIP). After two months of operation, 1,4‐dioxane concentrations decreased approximately 45 to 83 percent at monitoring locations in the test area. The results of the SIP confirmed 13C‐enriched 1,4‐dioxane was transformed into dissolved inorganic carbon (suggesting mineralization to carbon dioxide) and incorporated into microbial biomass (likely attributed to metabolic uptake of biotransformation intermediates or of carbon dioxide).  ©2016 Wiley Periodicals, Inc.  相似文献   

11.
Despite the installation in the 1980s and 1990s of hydraulic containment systems around known source zones (four slurry walls and ten pump‐and‐treat systems), trichloroethene (TCE) plumes persist in the three uppermost groundwater‐bearing units at the Middlefield‐Ellis‐Whisman (MEW) Superfund Study Area in Mountain View, California. In analyzing TCE data from 15 recovery wells, the observed TCE mass discharge decreased less than an order of magnitude over a 10‐year period despite the removal of an average of 11 pore volumes of affected groundwater. Two groundwater models were applied to long‐term groundwater pump‐and‐treat data from 15 recovery wells to determine if matrix diffusion could explain the long‐term persistence of a TCE plume. The first model assumed that TCE concentrations in the plume are controlled only by advection, dispersion, and retardation (ADR model). The second model used a one‐dimensional diffusion equation in contact with two low‐permeability zones (i.e., upper and lower aquitard) to estimate the potential effects of matrix diffusion of TCE into and out of low‐permeability media in the plume. In all 15 wells, the matrix diffusion model fit the data much better than the ADR model (normalized root mean square error of 0.17 vs. 0.29; r2 of 0.99 vs. 0.19), indicating that matrix diffusion is a likely contributing factor to the persistence of the TCE plume in the non‐source‐capture zones of the MEW Study Area's groundwater‐extraction wells. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
The objective of this study was to evaluate the capability of partially penetrating (hanging) funnel‐and‐gate structures, designed using reverse flow trajectories, for capturing plumes of contaminated groundwater. Linear capture structures, comprised of two slurry cutoff walls on either side of a permeable gate, were positioned perpendicular to regional groundwater flow in a hypothetical unconfined aquifer. A four‐step approach was used for each of two simulated settings: (1) a numerical mass transport model generated a contaminant plume originating from a source area; (2) a particle‐tracking model projected groundwater flow paths upstream from a treatment gate; (3) the structure was widened and deepened until bounding path lines contained the plume; and (4) mass transport simulation tested the ability of the structure to capture the plume. Results of this study suggest that designing funnel‐and‐gate structures using reverse particle tracking may result in too small a structure to capture a contaminant plume. This practice generally ignores effects of hydrodynamic dispersion, which may enlarge plumes such that contaminants move beneath or around a capture structure. This bypassing effect may be considerable even for low values of dispersivity. Particle‐tracking approaches may also underestimate the amount of time required to reduce contaminant concentrations to acceptable levels. © 2007 Wiley Periodicals, Inc.  相似文献   

13.
This study evaluated the effect of heterogeneity in hydraulic conductivity on the tendency for contaminant plumes to attenuate via dilution, hydrodynamic dispersion, and molecular diffusion in simulated aquifers. Simulations included one homogeneous and four increasingly heterogeneous hydraulic conductivity fields. A numerical mass transport model generated an initial contaminant plume for each case; all initial plumes had the same mass. Next, the model simulated plume migrations through the simulated aquifers. Results suggest that highly heterogeneous settings are potentially effective at plume attenuation. Low‐velocity zones in heterogeneous settings delay plume travel, enabling more time for natural processes to lower contaminant concentrations in groundwater. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The influence of aqueous‐ and mineral‐phase iron on royal demolition explosive (RDX) destruction has been previously investigated in theoretical settings and bench‐scale tests by various practitioners. The feasible use of in situ redox manipulation to create reactive Fe(II) is contingent upon the aquifer containing enough iron oxides and iron‐bearing clay minerals for the treated zone to remain effective. The following is a summary of a bench‐scale assessment of this relationship using aquifer material from an ongoing groundwater remediation effort at the Iowa Army Ammunition Plant (IAAP). A bench‐scale study was designed to determine the relative contributions of the biotic and iron‐mediated abiotic degradation processes to the net decrease in RDX observed at the site using saturated aquifer samples collected from within the RDX plume. Sterilized samples with a sufficient stoichiometric excess of both soluble and mineral‐phase iron reduced concentrations of RDX in both the soil and water fractions to the same extent as the samples containing native biota. These results indicate that in situ, abiotic degradation of RDX is feasible in areas unsuitable to biotic degradation processes, yielding an additional alternative for in situ RDX remediation. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Tetrachloroethene (PCE) releases at a former dry cleaner resulted in impacts to soil and shallow groundwater beneath and adjacent to the building. Subsurface impacts led to vapor intrusion with PCE concentrations between 900 and 1,200 micrograms per cubic meter (μg/m3) in indoor air. The migration pathways of impacted soil vapor were evaluated through implementation of a helium tracer test and vapor sampling of an exterior concrete block wall. Results confirmed that the concrete block wall acted as a conduit for vapor intrusion into the building. A combination of remediation efforts focused on mass reduction in the source area as well as mitigation efforts to inhibit vapor migration into the building. Excavation of soils beneath the floor slab and installation of a spray‐applied vapor barrier resulted in PCE concentrations in indoor air decreasing by over 97.9 percent. Operation of an active ventilation system installed under the floor slab and groundwater remediation via injections of nano‐scale zero valent iron (nZVI) further reduced PCE concentrations in indoor air by over 99.8 percent compared to baseline conditions. While significant reductions of PCE concentrations in groundwater were observed within two months after injection, maximum reductions to PCE concentrations in indoor air were not observed for an additional 12 months. © 2014 Wiley Periodicals, Inc.  相似文献   

16.
In situ treatability studies are being conducted to evaluate various in situ technologies to manage groundwater contamination at the NASA Marshall Space Flight Center in Huntsville, Alabama. The focus of these studies is to evaluate remediation options for contaminated (mostly aerobic) groundwater occurring within the basal portion of a clayey residuum called the rubble zone. The tension‐saturated media and unsaturated media lying above the rubble zone are also being treated where they make up a significant component of the contaminant mass. An in situ chemical reduction field pilot test was implemented (following bench‐scale tests) during July and August 2000. The test involved the injection of zero‐valent iron powder in slurry form, using the FeroxSM process patented by ARS Technologies, Inc. The pilot test focused on trichloroethene (TCE)‐contaminated groundwater within the rubble zone. Maximum pre‐injection concentrations of about 72,800 micrograms per liter (μg/l) were observed and no secondary sources are believed to exist beneath the area. The potential presence of unexploded ordnance forced an implementation strategy where source area injections were completed, as feasible, followed by overlapping injections in a down gradient alignment to create a permeable reactive zone for groundwater migration. Eight post‐injection rounds of groundwater performance monitoring were completed. The results are encouraging, in terms of predicted responses and decreasing trends in contaminant levels. © 2003 Wiley Periodicals, Inc.  相似文献   

17.
Recent improvements in field‐portable analytical equipment allow accurate on‐site measurement of VOCs present in air at concentrations of less than 0.1 parts per million volume (ppmv). The objective of this project is to determine if the use of these instruments for vapor‐phase measurements of headspace in a monitoring well can serve as a reliable and accurate method for monitoring volatile organic compound (VOC) concentrations in groundwater under equilibrium conditions. As part of a comprehensive research project investigating the utility of this proposed monitoring method, the authors have completed a laboratory validation study to identify instruments and sample‐collection methods that will provide accurate measurement of VOC concentrations in groundwater. This laboratory validation study identified two field‐portable instruments (a gas chromatograph and a photoionization detector) with sufficient sensitivity to measure VOCs in groundwater at concentrations below typical monitoring standards (i.e., 1 to 5 μg/L). The accuracy and precision of these field instruments was sufficient to satisfy typical data‐quality objectives for laboratory‐based analysis. In addition, two sample‐collection methods were identified that yield vapor‐phase samples in equilibrium with water: direct headspace sampling and passive diffusion samplers. These sample‐collection methods allow the field instruments (which measure VOC concentrations in vapor‐phase samples) to be used to measure VOC concentrations in water. After further validation of these sample‐collection methods in the field, this monitoring method will provide a simple way to obtain accurate real‐time measurements of VOC concentrations in groundwater using inexpensive field‐portable analytical instruments. © 2009 Wiley Periodicals, Inc.  相似文献   

18.
At the Old Rifle uranium mill‐tailing site in eastern Colorado, a test of subsurface amendment with acetate to stimulate the reductive immobilization of uranium was monitored by using lipid biomarker analysis and incorporation of 13C‐labeled acetate into lipid biomarkers. Both sediment and groundwater samples were analyzed. Within 7 days of acetate addition, groundwater microbial biomass increased by a factor of 5, and remained higher than control values in most samples for the 28 days sampled. At 29 days after the beginning of acetate amendment, 4 of 12 sediment samples had microbial biomass greater than the 95 percent confidence interval of controls. The mole percents of the phospholipid fatty acids 16:1ω7c and 16:1ω5c increased over control values upon acetate amendment, and incorporated high levels of 13C from labeled acetate in groundwater and sediment samples. 16:1ω7c is a biomarker for Geobacter, and evidence is provided that 16:1ω5c represents an unidentified iron‐reducing bacterium, probably a member of the Desulfobulbaceae. Biomarkers for organisms other than iron‐reducing bacteria, iso‐ and anteiso‐branched fatty acids and 18:1ω9c, decreased upon acetate amendment, and had their highest stable isotope incorporation at least 4 days after labeled acetate amendment ended, evidence for carbon‐sharing between iron‐reducers and other microorganisms. © 2011 Wiley Periodicals, Inc.  相似文献   

19.
Groundwater remediation alternatives were simulated for homogeneous and heterogeneous aquifers with a numerical mass transport model. Low‐energy alternatives involved an injection–extraction well pair positioned along a downgradient linear transect. This transect was located 5 m from the contaminant plume and oriented perpendicular to the regional hydraulic gradient. Through numerous trials, for one homogeneous and three heterogeneous settings, the model identified an optimal spacing and minimum pumping rate for a well pair: (1) centered on the downgradient tip of the plume (best centered), and (2) anywhere along the downgradient transect (best overall). Results suggest that low‐energy well pairs are an effective means for containing and removing some contaminant plumes, and best‐performing configurations are generally not centered on the downgradient tip of the initial contaminant plume. ©2015 Wiley Periodicals, Inc.  相似文献   

20.
In June and July 2001, the Massachusetts Department of Environmental Protection (MassDEP) installed a permeable reactive barrier (PRB) to treat a groundwater plume of chlorinated solvents migrating from an electronics manufacturer in Needham, Massachusetts, toward the Town of Wellesley's Rosemary Valley wellfield. The primary contaminant of concern at the site is trichloroethene (TCE), which at the time had a maximum average concentration of approximately 300 micrograms per liter directly upgradient of the PRB. The PRB is composed of a mix of granular zero‐valent iron (ZVI) filings and sand with a pure‐iron thickness design along its length between 0.5 and 1.7 feet. The PRB was designed to intercept the entire overburden plume; a previous study had indicated that the contaminant flux in the bedrock was negligible. Groundwater samples have been collected from monitoring wells upgradient and downgradient of the PRB on a quarterly basis since installation of the PRB. Inorganic parameters, such as oxidation/reduction potential, dissolved oxygen, and pH, are also measured to determine stabilization during the sampling process. Review of the analytical data indicates that the PRB is significantly reducing TCE concentrations along its length. However, in two discrete locations, TCE concentrations show little decrease in the downgradient monitoring wells, particularly in the deep overburden. Data available for review include the organic and inorganic analytical data, slug test results from nearby bedrock and overburden wells, and upgradient and downgradient groundwater‐level information. These data aid in refining the conceptual site model for the PRB, evaluating its performance, and provide clues as to the reasons for the PRB's underperformance in certain locations. © 2008 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号