首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The U.S. Atomic Energy Commission (AEC) selected Rocky Flats, east of the Rocky Mountains, as the site to fabricate “plutonium pits,” triggers for H‐bombs, and operations began in 1952. Press reports revealed the plant's connection to atomic weapons in 1956. Denver is downwind and “downslope” by about 16 miles. As western suburbs moved closer to Rocky Flats over time, plant accidents sent plutonium and other contaminants offsite. In 1989, armed agents of the U.S. Environmental Protection Agency (EPA) and Federal Bureau of Investigation raided the facility, and the plant operator, Rockwell International, subsequently pleaded guilty to criminal environmental violations. By this time, the U.S. Department of Energy had inherited responsibility for Rocky Flats and atomic weapons production. In 1993, the primary mission at Rocky Flats became cleanup of contamination from plutonium and other hazardous substances. Under Energy's “Accelerated Cleanup” plan, remediation was certified complete in 2005 by the Department's cleanup regulators, EPA, and the Colorado Department of Public Health. But planned uses for the “buffer zone” around the facility's central industrial area, and for off‐site areas continued to generate public controversy. This article examines the controversy and reports on general “stewardship” concepts for long‐term waste management.  相似文献   

2.
The U.S. Department of Energy's (US DOE's) responsibilities for its former national nuclear weapons complex include remediation of the Hanford Site in Washington State. In 1989, the site's primary mission shifted from nuclear weapons material production to cleanup of the extensive radioactive and chemical contamination that represented the production legacy. Cleanup is governed by the Tri‐Party Agreement (TPA), between the US DOE, as responsible party, and the U.S. Environmental Protection Agency and Washington State Department of Ecology, as joint regulators. Nearly 20 years have passed since the TPA was signed, but the Hanford remediation is expected to require decades longer. This article covers the cleanup progress to date and challenges that remain, particularly from millions of gallons of highly radioactive liquid wastes and proposals to bring new wastes to Hanford. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
The U.S. Department of Energy (US DOE) remediation responsibilities include its Idaho National Laboratory. In 1989, the U.S. Environmental Protection Agency placed the Idaho site on its National Priority List for environmental cleanup. The site's contamination legacy from operations included inactive reactors and other structures, spent nuclear fuel, high‐level liquid radioactive wastes, calcined radioactive wastes, and transuranic wastes. Documents governing cleanup include a 1995 Settlement Agreement between the US DOE and the US Navy as responsible parties, and the State of Idaho. The Subsurface Disposal Area contains buried transuranic wastes, lies above the East Snake River Plain Aquifer, and could be the “site's most nettlesome cleanup issue,” according to an outside observer. This article describes the technical and legal difficulties that have been encountered in remediating this area. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
Many public agencies and private entities are faced with assessing the risks to humans from contamination on their lands. The United States Department of Energy (US DOE) and Department of Defense are responsible for large holdings of contaminated land and face a long‐term and costly challenge to assure sustainable protectiveness. With increasing interest in the conversion of brownfields to productive uses, many former industrial properties must also be assessed to determine compatible future land uses. In the United States, many cleanup plans or actions are based on the Comprehensive Environmental Responsibility, Compensation, and Liability Act, which provides important but incomplete coverage of these issues, although many applications have tried to involve stakeholders at multiple steps. Where there is the potential for exposure to workers, the public, and the environment from either cleanup or leaving residual contamination in place, there is a need for a more comprehensive approach to evaluate and balance the present and future risk(s) from existing contamination, from remediation actions, as well as from postremediation residual contamination. This article focuses on the US DOE, the agency with the largest hazardous waste remediation task in the world. Presented is a framework extending from preliminary assessment, risk assessment and balancing, epidemiology, monitoring, communication, and stakeholder involvement useful for assessing risk to workers and site neighbors. Provided are examples of those who eat fish, meat, or fruit from contaminated habitats. The US DOE's contaminated sites are unique in a number of ways: (1) huge physical footprint size, (2) types of waste (mixed radiation/chemical), and (3) quantities of waste. Proposed future land uses provide goals for remediation, but since some contamination is of a type or magnitude that cannot be cleaned up with existing technology, this in turn constrains future land use options, requiring an iterative approach. The risk approaches must fit a range of future land uses and end‐states from leave‐in‐place to complete cleanup. This will include not only traditional risk methodologies, but also the assessment and surveillance necessary for stewards for long‐term monitoring of risk from historic and future exposure to maintain sustainable protectiveness. Because of the distinctiveness of DOE sites, application of the methodologies developed here to other waste site situations requires site‐specific evaluation © 2007 Wiley Periodicals, Inc.  相似文献   

5.
We examined site‐specific advisory board (SSAB) minutes and local newspaper coverage of the Fernald, Hanford, Idaho, Oak Ridge, Rocky Flats, and Savannah River sites of the U.S. Department of Energy (US DOE) in order to determine the importance of risk‐related issues related to remediation and other forms of environmental management. About one‐third of SSAB issues were risk‐related, and these were disproportionately major issues at meetings. The media focused on risks associated with remediation and other forms of waste management. The analysis implies that contractors and government officials need to establish and maintain communications with advisory panels and accentuate these contacts well in advance of contemplated new actions. © 2008 Wiley Periodicals, Inc.  相似文献   

6.
The U.S. Department of Energy's (US DOE's) environmental challenges include remediation of the Hanford Site in Washington State. The site's legacy from nuclear weapons “production” activities includes approximately 80 square miles of contaminated groundwater, containing radioactive and other hazardous substances at levels above drinking water standards. In 1998, the U.S. General Accounting Office (US GAO), the auditing arm of Congress, concluded that groundwater remediation at Hanford should be integrated with a comprehensive understanding of the “vadose zone,” the soil region between the ground surface and groundwater. The US DOE's Richland Operations Office adjusted its program in response, and groundwater/vadose‐zone efforts at Hanford have continued to develop since that time. Hanford provides an example of how a federal remediation program can be influenced by reviews from the US GAO and other organizations, including the US DOE itself. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Remediation responsibilities of the U.S. Department of Energy (DOE) encompass a vast national complex of highly contaminated former weapons facilities. During the mid‐1990s, DOE announced its intentions to consolidate some waste types at specific sites. At about the same time, organizations and public officials around DOE sites urged a National Dialogue, designed to develop comprehensive solutions to the Department's needs for waste disposition ( transportation, treatment, and storage). Recent opposition from citizens and elected officials in Nevada and Washington State has presented obstacles to DOE's plans. Additionally, chairs of nine site‐specific advisory boards recommended that DOE support a National Stakeholder Forum, similarly designed to develop solutions to disposition needs. This article reviews the chronology of DOE's disposition efforts, along with public and state reactions and recommendations. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
In 1994, the U.S. Department of Energy (DOE) initiated a contract reform program intended to strengthen oversight capabilities and encourage the creation of contract and incentive structures, which would effectively facilitate the treatment of onsite contamination and waste. The remedia‐tion and disposal of these legacy wastes is the core of the Department's environmental manage‐ment mission (Government Accountability Office [GAO], 2003). Despite a concerted effort toward achieving the goals of the reform, progress has been slow. Many projects continue to necessitate cost and time extensions above those originally agreed upon. Although the Department insti‐tuted an accelerated cleanup program in 2002, promising to shave some $50 billion and 35 years from its earlier cost and schedule projections, there have been delays in critical project areas that call into question the attainability of the proposed reductions (GAO, 2005). Numerous explana‐tions have been offered as to why achieving these goals has proven so difficult, many of which have concluded that flawed contracting practices are to blame. This article concludes that the root of the problem is much deeper and that the organizational criticisms aimed at DOE are as much a legacy as the waste itself. Although the focus of this article is on large former nuclear weapons sites, these types of contracting and organizational issues are often found at other gov‐ernment and private complex hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

9.
This article quantifies the nature, frequency, and cost of environmental remediation activities for onshore oil and gas operations, as determined from over 4,100 environmental remediation cases in Texas, Kansas, New Mexico, and Colorado. For the purpose of this article, “remediation'' refers to cleanup efforts that entail longer‐term site characterization, monitoring, and remedial action beyond the initial spill cleanup or emergency response stage. In addition, data are also presented regarding short‐term spill cleanup activities in two of the four states. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
U.S. Department of Energy (US DOE) remediation responsibilities include the Hanford site in Washington State. Cleanup is governed by the Tri‐Party Agreement (TPA) between the US DOE as the responsible party and the U.S. Environmental Protection Agency and Washington State Department of Ecology as joint regulators. In 2003, the US DOE desired to implement a “Risk‐Based End State” (RBES) policy at Hanford, with remediation measures driven by acceptable risk standards using exposure scenarios based on the 1999 Hanford Comprehensive Land‐Use Plan. Facing resistance from regulators and stakeholders, the US DOE solicited public input on its policy. This led to a Hanford Site End State Vision in 2005 and a commitment that the TPA would continue to control remediation. This article describes how regulator and public participation modified RBES to an end‐state vision. © 2010 Wiley Periodicals, Inc.  相似文献   

11.
The people who live in the communities where complex groundwater sites are located are as diverse as the country itself, but those who fight for the cleanup of our groundwater recognize that total cleanup may be difficult, if not impossible, in our lifetimes. Still, as explained in a December 2013 joint letter to US EPA, we want those who are responsible for environmental protection, be they polluters, developers, or regulatory agencies, to try harder before admitting defeat. In Mountain View, California, community activists have developed criteria for the adaptive cleanup of the Moffett‐MEW Regional Plume of TCE groundwater contamination that emphasizes areas with high contaminant mass, source areas, locations that reduce the need for long‐term vapor intrusion mitigation, properties where the detectable plume encroaches on residential areas, schools, and other sensitive uses, and areas planned for reuse. In many other communities, trust is the key to developing community support for remedial strategies. Communities that are listened to tend to feel more empowered. Empowered communities tend to offer more constructive advice. Decision makers tend to listen to communities that offer constructive advice. In summary, when the cleanup going gets tough, empowered communities believe that it is time to optimize and adapt, not to give up. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
Expert software-based decision support is speeding the process of defining environmental hazards and identifying remedial responses for the U.S. Department of Energy's (DOE) hazardous waste cleanup projects throughout the United States. Pacific Northwest Laboratories' (PNL) Remedial Action Assessment System (RAAS), and associated Technology Information System (TIS), written for Macintosh computers (soon for PC-compatible computers), sort through an encyclopedic data base to help environmental engineers prepare the most appropriate remedial strategy. The system has been available to DOE and other U.S. government engineers since last year and will soon be commercially available.  相似文献   

13.
This article discusses creating a sustainably protective engineered and human management system in perpetuity for sites with long‐lived radiological and chemical hazards. This is essential at this time because the federal government is evaluating its property as assets and attempting to reduce its holdings, while seeking to assure that health and ecosystems are not put at risk. To assist those who have a stake in the remediation, management, and stewardship of these and analogous privately owned sites, this article discusses current end‐state planning by reviewing the federal government's accelerated efforts to reduce its footprint and how those efforts relate to sustainability. The article also provides a list of questions organized around six elements of risk management and primary, secondary, and tertiary disease and injury prevention. Throughout the article, the U.S. Department of Energy (DOE) is used as an example of an organization that seeks to reduce its footprint, manage its budget, and be a steward of the sites that it is responsible for. However, the approach and questions are appropriate for land controlled by the Department of Defense (DOD), the General Services Administration (GSA), and other public and private owners of sites with residual contamination. © 2005 Wiley Periodicals, Inc.  相似文献   

14.
1,4‐Dioxane is a synthetic industrial chemical frequently found at contaminated sites where 1,1,1‐trichloroethane was used for degreasing. It is a probable human carcinogen and has been found in groundwater at sites throughout the United States. The physical and chemical properties and behavior of 1,4‐dioxane create challenges for its characterization and treatment. It is highly mobile and has not been shown to readily biodegrade in the environment. In December 2006, the U.S. Environmental Protection Agency's Office of Superfund Remediation and Technology Innovation (OSRTI) prepared a report titled “Treatment Technologies for 1,4‐Dioxane: Fundamentals and Field Applications.” The report provides information about the chemistry of dioxane, cleanup goals, analytical methods, available treatment technologies, and site‐specific treatment performance data. The information may be useful to project managers, technology providers, consulting engineers, and members of academia faced with addressing dioxane at cleanup sites or in drinking water supplies. This article provides a synopsis of the US EPA report, which is available at http://cluin.org/542R06009 . © 2007 Wiley Periodicals, Inc.  相似文献   

15.
This article summarizes the current status of known contamination arising from abandoned uranium mines (AUMs) within the Navajo Nation and examines the options for addressing the elevated risks to health that AUM waste poses to the people of the Navajo Nation. More specifically, this article provides the following:
  1. An overview of past uranium mining conducted on the Navajo Nation, the current status of AUM waste within the Navajo Nation, and the human health risks associated with uranium exposure.
  2. A discussion of Navajo Fundamental Law, the Diné (the Navajo People) Uranium Remediation Advisory Commission, and the Navajo Nation Department of Justice's position regarding institutional controls and cleanup of AUMs.
  3. A summary of cleanup actions taken to date to address AUM waste and the lessons learned from such actions.
  4. Options for cleanup of AUM waste consistent with Diné Fundamental Law, the Diné Natural Resources Protection Act of 2005, and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA).
The information summarized in this article was previously presented as an “Initial White Paper on Cleanup Options for Navajo Abandoned Uranium Mines,” prepared with participation from multiple stakeholders including the Navajo Nation Environmental Protection Agency (NNEPA), the Navajo Nation Department of Justice (NNDOJ), and the United States Environmental Protection Agency (US EPA). ©2016 Wiley Periodicals, Inc.  相似文献   

16.
The Consortium for Risk Evaluation with Stakeholder Participation (CRESP) was asked by the United States Department of Energy (US DOE) to consider the root causes of remediation projects that fail to entirely achieve their goals and then to offer suggestions to assist the Department. To begin this project, CRESP held several meetings at which the group defined problematic outcomes, the early symptoms of problematic outcomes, and the root causes of failing to meet expectations. The five root causes are complex science, engineering, and technology; ambiguous economics; project management shortcomings; political processes and credibility; and history and organizational culture. This article, while focusing on the US DOE, provides a larger context for many remediation projects that have failed to entirely live up to their sponsors' expectations. © 2007 Wiley Periodicals, Inc.  相似文献   

17.
The U.S. Army Corps of Engineers (US ACE) is responsible for conducting the cleanup of radiological contaminated properties as part of the Formerly Utilized Sites Remedial Action Program. One property is the Rattlesnake Creek (RSC) portion of the Ashland sites. The RSC stream sediments are contaminated with thorium‐230, radium‐226, and uranium. The US ACE is closing RSC using protocols contained within the Multi‐Agency Radiation Survey and Site Investigation Manual (MARSSIM). At RSC, the US ACE developed site‐specific derived concentration guideline level (DCGL) cleanup requirements consistent with the MARSSIM guidance. Because of uncertainty about the distribution of contamination within the creek, the US ACE used the Triad approach to collect data and design remedial actions. Systematic planning helped target the areas of concern, develop a conceptual site model, and identify data gaps to be addressed before remediation plans were finalized. Preremediation sampling and analysis plans were designed to be explicitly consistent with final status survey requirements, allowing data sets to support both excavation planning needs and closure requirements in areas where contamination was not encountered above DCGL standards. Judicious use of real‐ time technologies such as X‐ray fluorescence and gamma walkover surveys minimized expensive off‐ site alpha spectrometry analyses, and at the same time provided the ability to respond to unexpected field conditions. © 2004 Wiley Periodicals, Inc.  相似文献   

18.
The MicroBlower Sustainable Soil Vapor Extraction System is a cost‐effective device specifically designed for remediation of organic compounds in the vadose zone. The system is applicable for remediating sites with low levels of contamination and for transitioning sites from active source technologies such as active soil vapor extraction to natural attenuation. It can also be a better choice for remediating small source zones that are often found in “tight zones” that are controlled by diffusion rate. The MicroBlower was developed by the Savannah River National Laboratory at the US Department of Energy's Savannah River Site to address residual volatile organic compound (VOC) contamination after shutdown of active soil vapor extraction systems. In addition, the system has been deployed to control recalcitrant sources that are controlled by diffusion rates. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The U.S. Environmental Protection Agency helped select in situ vitrification (ISV) as an interim response action for the National Priority List (NPL) site at the Rocky Mountain Arsenal (RMA) in Commerce City, Colorado. That decision is being reviewed, pending redesign of the technology by its vendor for what would be the largest ISV project in the United States, involving 220 tons of arsenic, twenty-six tons of mercury, and low levels of organic compounds. That material was left in three arsenic precipitation basins that were used from 1942 to 1947 to manufacture chemical warfare agents and later backfilled. This article explores the eight principal environmental, technical, and financial factors that EPA's Region VII must address before committing $1,200 per cubic yard, or $14 million, to seal that material in glass.  相似文献   

20.
Groundwater monitoring at Department of Energy's (DOE's) Hanford Site is a large, expensive undertaking serving multiple purposes, including compliance with regulations and DOE orders, remediation efforts under CERCLA, and sitewide risk evaluations. Like most large Federal facilities, the monitoring program currently in place has evolved and grown overtime as new requirements were established and groups were assigned to address them. DOE and its regulators simultaneously awakened to the fact that there was a need to reevaluate the monitoring activities at Hanford, to better integrate the program, to avoid duplicative sampling, to improve everyone's understanding of the performance of the network, and to evaluate whether adequate data could be collected for lower cost. This paper describes the approch that was developed to guide the rethinking effort with direct and extensive involvement of DOE, EPA, Washington Department of Ecology, Indian Tribes, and DOE Contractors, and how this approach was applied to a large portion of the site. Both the human element of the process (cultural change), as well as some of the technical details associated with the effort, including a flexible application of EPA's data quality objectives process, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号