首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT: Phytoplankton carbon-14 productivity at a depth of 50 percent of surface light and chlorophyll-α concentrations were measured every other month from November 1985 through September 1986 at 12 stations in the Charlotte Harbor estuarine system. Maximum productivity and chlorophyll-α concentrations occurred during summer or early autumn near the mouths of tidal rivers. Most of the variability in light-normalized productivity and chlorophyll-α could be attributed to two factors derived from Principal Component Analysis of ambient water-quality characteristics. One factor related to seasonal variability and the other to spatial variability. The seasonal factor incorporated the interaction of temperature and nutrients. The spatial factor incorporated the interaction of salinity, nutrients, and water color that resulted from the mixing of freshwater inflow and seawater. Although freshwater inflow increased the availability of nutrients in low salinity (less than 10‰) waters, the highly colored freshwater restricted light penetration and phytoplankton productivity. Maximum productivity and biomass occurred where color associated with the freshwater inflow had been diluted by seawater so that light and nutrients were both available. Concentrations of inorganic nitrogen were often at or below detection limit throughout most of the high salinity (greater than 20‰) waters of the estuary and was probably the most critical nutrient in limiting phytoplankton productivity.  相似文献   

2.
ABSTRACT: A 17-year record of chlorophyll a at eight limnetic sampling stations was used to evaluate putative changes in the trophic status of Lake Okeechobee, a shallow polymictic lake located in the subtropical environment of South Florida. Significant spatial differences were observed in the temporal patterns and variability of chlorophyll a concentrations. The highest chlorophyll a values were found in the northern and northwestern regions of the lake. The center of the lake, subject to high levels of non-algal suspended solids, exhibited relatively low chlorophyll a values and coefficient of variation. The lowest chlorophyll a values were observed at the southernmost sampling station in the lake. This was also the station that showed a significant upward trend in annual mean chlorophyll a values over the 17-year period of record. Examination of the relationship between chlorophyll a and three key environmental variables (i.e., total phosphorus concentration, phosphorus loading, and lake stage) revealed significant correlations at two out of the eight stations. The overall results of this study indicate that spatial and temporal disparities in the distribution and dynamics of chlorophyll a in Lake Okeechobee mandate more temporally and spatially intense approaches to the evaluation of trophic state than used in previous studies.  相似文献   

3.
ABSTRACT: In addition to measuring the quantity of stormwater runoff generated during ten rainfall events from the Vehicle Assembly Building (VAB) area of Kennedy Space Center (KSC), historical rainfall records were also used for determining the feasibility of implementing a program of stormwater recycling to air conditioning cooling towers. It was projected that 0.182 million gallons per day (MGD) of runoff would be generated from the VAR area during a year of average rainfall (48 inches); only 0.117 MGD is required for coolant makeup water in the VAR area. Due to the seasonal variations in rainfall, stormwater recycling may not always meet all the cooling water demands.  相似文献   

4.
: A data base consisting of predominantly nitrogen limited Florida lakes from the National Eutrophication Survey (NES) was used to develop a trophic state index based on total nitrogen concentration. This index was compared with Carlson's (1977) index based on total phosphorus concentration, and the lesser of the two values for each lake was averaged with indices based on Secchi disk transparency and chlorophyll a concentration to assess the trophic state of the 40 Florida NES lakes.  相似文献   

5.
ABSTRACT: As part of its overall system for protecting aquatic systems from unnecessary degradation, the State of Florida provides special protection for water bodies of unusual importance. Such water bodies are designated as “Outstanding Florida Waters” (OFW5). New discharges to OFWs are possible only if certain stringent criteria are met. A new point source direct discharge to an OFW is usually not allowed if it would cause any lowering of ambient water quality. A new indirect discharge (upstream from an OFW boundary) may be allowed only if it would not significantly degrade the OFW. To date, the advantages of the OFW system have clearly outweighed the disadvantages, and OFW designations are helping to protect Florida's most valuable waters from additional degradation. Florida's system could be a useful model for other jurisdictions wanting to provide special protection to special water bodies.  相似文献   

6.
ABSTRACT: Nine samples, each with different kinds and numbers of algae, were filtered at five pressures from 5 to 75 pounds per square inch and the amounts of chlorophylls a and b were measured. Pressures in the range tested had no effect on the measured amounts.  相似文献   

7.
ABSTRACT: The water budget computation in shallow lakes is complicated because marsh vegetation can transpire large quantities of lake water. Thus, a model including the marsh zone evapotranspiration (WET) was developed to compute the water budget for Lake Okeechobee. Three periods of testing (1969–74), planning (1963–74), and recorded period (1952–77) were used to compare the differences of the sum of storage deviation between the WET and conventional methods (WOET). Results of the WOET method showed that the sum of stage deviations were 87.42 cm (2.868 ft.), 231.80 cm (7.605 ft.), and 284.50 cm (9.333 ft.) in the testing, planning, and recorded periods, respectively. These stage deviations are equivalent in the same order to 29, 76, and 93 percent of the lake volume. In general, the WET method not only was applicable to compute the water budget for the lake but also reduced the sum of storage deviation by about 42, 31, and 49 percent, respectively, in those three periods. The storage deviation in WET method was reduced on an average to about 2 percent each year in all three periods, and the deviations were scattered more randomly than in WOET.  相似文献   

8.
ABSTRACT: The Conservation Areas in South Florida have been considered as one of the major water storage areas to provide a water supply for the Everglades National Park and Lower East Coast (LEC). Due to the increasing water demands of the area, additional backpumping of the surplus runoff from the LEC area into the Conservation Areas has been considered as one of several alternative plans. The Receiving Water Quantity (EPA, 1971) model has been adapted and modified to be applicable in the Conservation Areas to investigate the possible impact of additional inflow under various backpumping cases. The modification of the model included Manning's roughness coefficient, depth of flow, width of hypothetical channels through marsh areas, rainfall input, seepage rate, etc. The use of the Monte Carlo technique for area computations was found to be easy and time saving both in area and weighting rainfall input to each node. Comparison of results generated by this modified model with the recorded values in Conservation Areas 1 and 2A indicated that the model not only can be a very good evaluation tool to simulate the hydraulic regime of the Conservation Areas system but also a proper tool for investigating the impact of additional inflow resulting from the backpumping related to the water use planning and management.  相似文献   

9.
ABSTRACT: An application of the receiving water block of the EPA Storm Water management Model (SWMM) is presented to quantify water quality impacts and evaluated control alternatives for a 208 areawide waste water management plan in Volusia Country, Florida. The water quality impact analyses were conducted for dry-and wet-weather conditions to simulate dissolved oxygen (DO), chlorides, total nitrogen (TN), and total phosphorus (TP) in the Halifax Rivers, Florida, a 40-kilometer-long tidal estuary located on the Atlantic coast of Florida near Daytona Beach. Dry-weather analysis was performed using conventional 7-day, 10-year low flow conditions to determine a set of unit transfer coefficients which estimate the pollutant concentration transferred to any point in the estuary from a constant unit discharge of pollutants at the existing waste water treatment plant outfall locations. Wet-weather analysis was performed by continuous simulation of a typical three-month summer wet season in Florida. Three-month cumulative duration curves of DO, TN and TP concentrations were constructed to estimate the relative value of controlling urban runoff of waste water treatment plant effluent on the Halifax River. The three-month continuous simulation indicated that the greatest change in DO, TN, and TP duration curves is possible by abatement of waste water treatment plant pollution.  相似文献   

10.
Abstract: Chlorophyll analyses of both laboratory cultures and natural aquatic samples were unaffected by the use of magnesium carbonate. Equal volumes of the samples (at various pH values) were pipetted onto 0.45 micrometer filters with and without magnesium carbonate. Chlorophyll concentrations were determined for each filtered sample and those frozen for specified times. In all samples tested there was no difference either in the retention of algae or in the stability of chlorophyll over the time period and pH range tested.  相似文献   

11.
Data obtained from a limnological survey of 165 Florida lakes were analyzed to determine regional differences in lake color (Pt-Co units) and relations between color and various physical, chemical, and biological parameters. Average color measurements for the different lakes ranged from 0 to 416 Pt-Co units with individual measurements being as high as 600 Pt-Co units. With the exception of extreme south Florida, lake color concentrations were found to increase from north to south and from inland highlands to lowlands. Central Florida had the greatest heterogeneity in lake color because of an extremely diverse geology and physiography. Color was inversely related to Secchi disc transparency and positively related to total iron concentrations. Color was not strongly related to pH, total alkalinity, nutrients, chlorophyll a, and many other limnological parameters. Although lakes having color concentrations greater than 20 Pt-Co units can often be visually identified as colored lakes, the limnological processes in these are not necessarily different from those of lakes having clear water.  相似文献   

12.
ABSTRACT: Models for the prediction of chlorophyll a concentrations were developed and tested using data on 223 Florida lakes. A statistical analysis showed that the best model was log (Chl a) =?2.49 + 0.269 log (TP) + 1.06 log (TN) or log (Chl a) =?2.49 + 1.06 log (TN/TP) + 1.33 log (TP) where Chl a is the chlorophyll a concentration (mg m-3), TP is the total phosphorus concentration (mg m-3) and TN is the total nitrogen concentration (mg m-3). The model yields unbiased estimates of chlorophyll a concentrations over a wide range of lake types and has a 95 percent confidence interval of 29–319 percent of the calculated chlorophyll a concentrations. Other models, especially the published Dillon-Rigler and Jones-Bachmann phosphorus-chlorophyll models, are less precise when applied to Florida lakes. The data support the hypothesis that nitrogen is an important limiting nutrient in hypereutrophic lakes.  相似文献   

13.
ABSTRACT In many impoundment dynamic water quality models, the growth of two or more ecologic groups of phytoplankton may be simulated. These ecologic groups are differentiated by growth rates, temperature tolerances, settling rates, and the Michaelis-Menten half saturation constants for necessary nutrients. In this investigation, the effect of variations in the Michaelis-Menten half saturation constant for the limiting nutrient when two competing ecologic groups of algae are simulated is examined. In an idealized case, it is demonstrated that uncertainty in the half saturation constant for the limiting nutrient for one ecologic group of algae can significantly affect the simulation results and in some cases could lead to a poorly designed impoundment restoration program.  相似文献   

14.
ABSTRACT: Data were obtained from drilling and testing of a test injection well for deep underground injection of waste water effluent from the proposed 50-million-gallon-per-day (mgd) South District Regional Wastewater Treatment Plant of the Miami-Dade Water and Sewer Authority, Dade County, Florida. The drilling operation progressed in stages, each stage coverting the strata to be sealed off by the 48-inch, 40-inch, 30-inch, and 20-inch casings, respectively. Total depth of the well is 3,200 feet. The top of the saline, cavernous, dolomitic Boulder Zone was found at 2,790 feet below the surface and is separated from the Floridan aquifer above by approximately 1,100 feet of confining limestone layers. These confining layers were determined, by packer testing, to be very effective. The transmissivity of the Boulder Zone was estimated to be 14 × 106 gallons per day per foot (gpd/ft) from the data obtained from pump out tests. An 8,000-gallon-per-minute (gpm) injection test was conducted to confirm well performance under operating conditions. Based on all of the data obtained, it was concluded that underground injection into the Boulder Zone of secondary waste water effluent from the proposed treatment plant is feasible, both hydraulically and environmentally. A monitoring system was proposed to provide a record of the effects of injection on the subsurface environment.  相似文献   

15.
ABSTRACT: An environmental simulation model of the Upper St. Johns River Basin, Florida, has been developed in order to predict hydrologic responses under proposed management plans. Land use projections for each of 19 hydrologic planning units are provided by a linear programming analysis of agricultural activities. Inputs to the model include rainfall, runoff, evapotranspiration (ET), aquifer properties, topography, soil types, and vegetative patterns. A water balance is developed in the uplands based on infiltration, ET, surface runoff, and groundwater flow. Valley continuity is based on stage-volume relationship for inflows and outflows and a variable roughness coefficient dependent on vegetative patterns. Land use changes form the basis for predicting hydroperiod variation under alternative management schemes. Plans are ranked according to two criteria, deviation from a natural hydroperiod and flood or drought control provided. Results indicate that (1) a single reservoir without irrigation and (2) floodplain preservation plans are superior to (3) multiple reservoir with irrigation and (4) uncontrolled floodplain plans with regard to both criteria.  相似文献   

16.
ABSTRACT: Accurate water balance calculations are essential for water resource and environmental management decisions, but many of the terms used in the equation are difficult to measure. In this study, a method for measuring rates of evapotranspiration and net seepage from a freshwater marsh in southwest Florida is described. The results are compared to evaporation pan estimates as well as to calculations that balanced all the terms in the hydrologic budget. The measured rates of evapotranspiration showed a. distinct seasonal trend ranging from an average high of 0.24 in/d during July 1992 to a low of 0.06 in/d in January 1993. Evapotranspiration rates were higher than Class A evaporation pan measurements during July and August, indicating transpiration by plants exceeded evaporation by pans. Net ground water seepage flowed out of the marsh except during periods of high water table conditions. When all terms in the hydrologic budget were evaluated, the equation balanced on a yearly basis with an error of 2 percent, on a seasonal basis with errors less than 7 percent, but on a monthly basis errors were as great as 30 percent. Total annual rainfall on the marsh was 45 percent of the total marsh hydrologic input and was approximately equal to the loss by evapotranspiration of 41 percent.  相似文献   

17.
This paper describes a flow-through microcuvette for determination of chlorophyll with the Turner Designs model 10 fluorometer. The device approximately doubles the speed of repetitive chlorophyll determinations. With a single-standard calibration procedure, chlorophyll concentrations in the approximate range of 0.01-2.0 ug/mL (in solvent extracts) can be determined with a relative error of less than 3 percent.  相似文献   

18.
ABSTRACT: Data from three ice-covered stations in Lake St. Clair were collected to evaluate the effect of ice and related variables on phytoplankton production. Primary production, phytoplankton standing crop, irradiation and temperature were measured from January to April, 1973. Mean production values ranged from 0.74 mgC/m3/h at station 1 near Mitchell Bay to 3.4 mgC/m3/h in waters at stations 2 and 3 below the Thames River mouth. A similar pattern was observed in chlorophyll a concentration, the mean values ranged from 0.63 μg/1 at station 1 to 2.1 and 1.3 μg/1 at stations 2 and 3. Temperature stratification occurred at the three stations. However, the temperatures at station 1 were consistently more than a degree warmer than at the other two stations. Irradiation was low, having a mean value at the sampling depth of .075 ly/min. The data is interpreted to indicate that the ice-bound phytoplankton were adapted to the low irradiation. It is suggested that the variation observed between stations is related to the formation of a plume by the Thames River and differences in nutrient loads carried by the St. Clair and Thames Rivers.  相似文献   

19.
ABSTRACT: A common problem encountered during regional planning and development of ground water dependent communities is the difficulty in deciding which areas should be preserved for aquifer recharge purposes. This paper describes the development and application of a digital overlay technique for objective evaluation and ranking of potential infiltration and potential recharge areas. Equations are developed which relate the hydrologic parameters pertaining to infiltration and recharge in a surface aquifer-confined aquifer system. These equations make use of discrete data, yet by application in a digital overlay technique results are obtained in the form of spatial distributions in order for regional trends and conditions to be examined. An application of this procedure to the 551,000 acre region of central Florida, known as the Green Swamp, is discussed. The results are presented in the form of computer generated maps which identify and rank areas of potential recharge to the aquifer system.  相似文献   

20.
ABSTRACT: Volusia County, in east central Florida, comprises approximately 1,200 square miles situated between the St. Johns River and the Atlantic Ocean. Most of the County is underlain by a three-aquifer system. Population centers in Volusia County, which create a large water demand, are located near the coast. Saltwater intrusion into the ground water near these population centers has led to relocation of public water supply wells further inland. Regional management of the county's water resources commissioned construction of a three-dimensional computer model of the county. Predevelopment simulation results were used as initial conditions for the development simulations, which included well discharge data. The predevelopment model calibration consisted of reproducing field-determined potentiometric surfaces. As part of the calibration process, sensitivity analyses were performed on boundary conditions, recharge rates, permeability, and leakage properties. Results of the model study indicate the utility of computer models as a management tool for the complex ground-water system in Volusia County.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号