首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of placer mining on the hydrology and water quality of several interior Alaska streams were studied as part of a project on the impacts of placer mining on stream ecosystems. Surface and subsurface waters were analyzed in the field for conductivity, pH, temperature, alkalinity, total and calcium hardnesses, iron, copper, manganese, ammonia-N, nitrate-N, nitrite-N, settleable solids, and turbidity. Total, nonfiltrable, and filtrable residues were determined in the laboratory. In the streams placer mining increased turbidity, settleable solids, nonfiltrable and filtrable residues and total iron. Surface and subsurface water levels, as measured in wells driven in the stream beds, were correlated with stream flow. Fine sediment deposited on stream beds in mined drainages reduced the hydraulic contact between the surface and subsurface waters of the stream and caused the piezometric water level to be below the surface water level of the mined streams. This resulted in higher specific conductance and significantly lower dissolved oxygen concentrations in the subsurface waters of mined streams compared to their surface waters. No significant differences were found for any water quality characteristics comparing surface to subsurface waters for the unmined streams.  相似文献   

2.
探究区域内矿区土壤重金属变化并对其进行污染评价,旨在为该区域环境保护及污染治理提供一定的理论依据,以期实现矿山地质环境保护与矿产资源开发并行的矿业绿色发展.以铅、锌、镉、砷含量为评价指标,结合《土壤环境质量标准》(GB 15618-2018),采用重金属单因子污染指数法与内梅罗综合污染指数法进行重金属污染评价,并对该区...  相似文献   

3.
ABSTRACT: A technique for using the rotifer Philodina acuticornis as a bioassay organism is described. The rotifer was exposed to a range of concentrations for each of 14 toxicants. The effects of the heavy metals cadmium, chromium, cobalt, copper, lead, mercury, nickel, silver and zinc were studied. Based upon 96 hours exposure in soft water the sensitivity of the rotifer to the metals from the most toxic to least toxic was: cadmium, mercury and copper, zinc, silver, nickel (chloride), chromium, nickel (sulfate), lead and colbalt. In hard water with 96 hours exposure the most to least toxic respectively were: cadmium, copper, mercury, chromium and lead. The 48 hour EC50 value suggests that zinc will follow mercury in relative toxicity when Philodina is tested in hard water. In a comparison of the toxicity of the chloride and sulfate salts of cadmium, nickel and zinc in soft water cadmium sulfate and zinc sulfate were more toxic after 96 hours; nickelous chloride was more toxic than nickelous sulfate. Increased water hardness decreased the toxicity of the heavy metals studied. The results suggest that this rotifer may be more sensitive than the bluegill sunfish to the salts of cadmium, copper, nickel, zinc and chromium and less sensitive to lead. Data for cobalt, silver and mercury were not available. Philodina was extremely tolerant of ammonium chloride and phenol. The feasibility and economics of using an inexpensive, readily cultured and available organism such as Philodina acuticornis as a bioassay organism were discussed.  相似文献   

4.
ABSTRACT: Turbidity, total residues, settleable solids, vertical light extinction, and primary production were measured in mined and unmined streams located in the interior highlands of Alaska. Undisturbed streams had low turbidities (< 1 NTU), total residue concentrations averaging 120 mg 1?1, and undetectable settleable solids. During active mining, turbidity, total residues, and settleable solids levels in a moderately mined stream averaged 170 NTU, 201 mg 1?1, and < 0.1 ml 1?1, respectively. In a heavily mined stream, turbidity and total residues were two orders of magnitude higher than in unmined streams and settleable solids nearly always exceeded 0.2 ml 1?1. Vertical extinction coefficients and turbidity were positively correlated. In undisturbed streams gross primary productivity (g-O2m?2d?1) ranged from 0.20 shortly after spring breakup to a maximum of 1.20 in early fall. Productivity in the moderately mined stream was reduced by 50 percent while photosynthetic efficiency doubled. Primary production was undetectable in a heavily mined stream. Maximum standing crops of periphyton measured as chlorophyll a occurred in fall in an undisturbed stream after 13 weeks of exposure and ranged from 4.5 to 11.8 mg-chl a m?2. The highest chlorophyll a densities recorded in the moderately mined stream was 3.8 mg m?2, and no chlorophyl a was detected in the heavily mined stream.  相似文献   

5.
ABSTRACT: The potentially toxic components in coal ash (ash particles, heavy metals) were evaluated in laboratory static, acute (96 hr) bioassays, both separately and in various combinations with extreme pH (5.0 and 8.5), using rainbow trout (Salmo gairdneri) and bluegifi sunfish (Lepomis macrochirus). Ash particle morphology and metal distribution anlaysis, using electron microscopy and surface-subsurface analysis by ion microscopy, showed that metals could be either clumped or evenly distributed on the surface of fly ash. Surface enrichment on fly ash particles from electrostatic precipitators, as measured by ion microscopy, was found for cadmium, copper, chromium, nickel, lead, mercury, titanium, arsenic, and selenium. Bottom (heavy) ash was not acutely toxic to either fish species at concentrations of up to 1500 mg/l total suspended solids (TSS) at pH 5.0, 7.5, or 8.5. Fly ash particles were not acutely toxic to blue-gill at levels up to 1360 mg/l TSS. Rainbow trout were highly sensitive to fly ash (25 to 60 percent mortality) at concentrations of 4.3 to 20.5 mg/I TSS when dissolved metal availability was high but were not sensitive at higher particulate concentrations (58 to 638 mg/I TSS) when dissolved metals were low. When metals were acid-leached from fly ash prior to testing, no rainbow trout mortality occurred at TSS concentrations of up to 2,350 mg/l TSS. When the percent of dissolved metal was high (e.g., 50–90 percent of the total), fish mortality was increased. Rainbow trout were nearly two orders of magnitude more sensitive than bluegill when subjected to a blend of cadmium, chromium, copper, nickel, lead, and zinc. The two species were similar in their acute sensitivity to acidic pH at levels at or below 4.0 and alkaline pH of 9.1. If the pH of coal ash effluent is contained within the range 6.0 to 9.0, acute toxicity to fish can be attributed to trace element availability from fly ash but not heavy ash. Control of holding pond and effluent pH and maximizing pond residence time are important strategies for minimizing effects of ash pond discharges on fish.  相似文献   

6.
The state of North Carolina's Department of Environment and Natural Resources (NCDENR) conducts routine water quality monitoring throughout the state to assess the health of aquatic systems. The current study reports the results of a retrospective (1990–2000) ecological risk assessment of six heavy metals (arsenic, cadmium, copper, lead, mercury, and zinc) in 17 North Carolina basins that was conducted to estimate the risk of heavy metal toxicity to freshwater organisms and assess the sufficiency of NCDENR's monitoring data to identify water-quality-related ecological threats. Acute and chronic ecotoxicological thresholds (ETs) were calculated for each metal based upon the 10th percentile of species sensitivity distributions and were normalized for water hardness. Statewide probabilities (expressed as percentages) of a random sample exceeding acute or chronic ETs among the six metals ranged from 0.01% to 12.19% and 0.76% to 21.21%, respectively, with copper having the highest and arsenic and mercury the lowest risk. Basin-specific probabilities varied significantly depending upon water hardness and presumably watershed development. Although the majority of specific sites where data were collected were at low risk for metal toxicity, some specific sites had a high probability of toxic events associated with one or more metals. Analytical detection limits for metals were frequently higher than estimated chronic ET, limiting the ability to assess the risk of chronic toxicity in soft-water basins. Results suggest risk-based criteria may be useful for assessing and validating the sufficiency of monitoring programs and prioritizing management goals.  相似文献   

7.
ABSTRACT: The occurrence of dissolved heavy metal concentrations in shallow ground water were measured at 126 sites within an urban watershed in southeastern Michigan. A total of 1,140 samples were collected from the first saturated zone, and the mean concentrations of 11 heavy metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, and zinc) were obtained and compared to their corresponding mean concentrations within surface soil. The results suggest that former and current land use processes have resulted in significant adverse impacts on the study region. Levels of Cr 20 to 30 times the maximum contaminant level (MCL) have been detected in the ground water beneath industrial sites. In addition, Cd and Pb have been found at levels exceeding their MCLs where surface soils are clay‐rich, and in sandy soils at more than 10 times their MCLs. The high levels of Cr in ground water strongly suggest that the chromium is in a hexavalent form, and this likelihood is supported by current studies. Given the hydraulic connection between the watershed's surface waters and the Great Lakes, these findings raise significant ecological and public health concerns.  相似文献   

8.
不同粒径土壤中重金属的分布规律   总被引:4,自引:1,他引:3  
赵晶  汤旭 《四川环境》2011,(4):17-20
本文选择提钒炼钢厂内部分土壤为研究对象,测定了重金属元素(镉、铜、铬、铅、锌)的含量,并与样品粒度大小的关系进行了探讨,结果表明金属(铜、铬、铅、锌、镉)的浓度最大值出现在粒径较小(100目或160目)的样品中,同时将测定结果与土壤环境质量标准比较,结果表明镉、锌存在污染,其余元素均未超标。  相似文献   

9.
《环境质量管理》2018,27(4):163-171
In order to examine the forms, sources, and pollution of heavy metals—arsenic (As), aluminum (Al), cadmium (Cd), chromium (Cr), copper (Cu), iron (Fe), nickel (Ni), lead (Pb), and zinc (Zn)—in Daechung Lake, Korea, sediment samples were collected in November 2014. Daechung Lake was constructed to supply water for human consumption, agricultural use, and industrial use as well as to generate electric power. The lake is stratified in the summer and surrounded mostly by agricultural and mining areas. Our results indicate that the heavy metals (except As and Cd) displayed similar concentrations at all of the sampling stations. As and Cd were high in locations where fine sediments had built up. Based on the enrichment factor of the metals, the sediments collected from all of the sampling stations were highly polluted by As and Cd. Therefore, deposition of heavy metals in Daechung Lake is possibly controlled by grain size and anthropogenic activity, such as drainage from abandoned mines, agricultural activities, and/or the release of wastewater. The most dominant forms for all of the metals were oxide and silicate forms. This suggests that the sediments of Daechung Lake are not highly sulfidic. However, the sediment samples were collected after the collapse of seasonal stratification. Therefore, future studies should include elucidation of major sources for As and Cd and the collection of sediments during months of stratification.  相似文献   

10.
The impact of surface mining for coal on the nature and extent of freshwater wetlands was assessed on 73,200 ha in western Pennsylvania. The influence of mining on wetlands was not uniform across physiographic regions, varying with regional differences in hydrology and soils. Overall, mined lands supported 18% more palustrine wetlands than unmined lands, primarily because of a 270% gain in permanent, open-water wetlands on mined lands in the glaciated region. Open-water wetlands declined on mined lands in unglaciated regions owing to unfavorable hydrologic conditions. The number and size of emergent wetlands declined as a result of mining. Mined lands supported 81% fewer riverine wetlands than unmined lands. This was caused primarily by avoidance of lands containing streams, and secondarily by a 10% reduction in replacement of riverine wetlands during reclamation. Land managers need to develop land use policies that maximize the ecological and social benefits that can be derived from developing diverse wetland communities on mined lands.  相似文献   

11.
《Resources Policy》2005,30(3):168-185
Examination of copper, nickel, lead and zinc (base metals) exploration expenditure and discovery in Australia over the period 1976–2005 reveals some significant trends. Australia's base metal resource inventory grew substantially as a consequence of successful exploration over the period, both through addition of resources at known deposits and new discoveries, notably a small number of very large deposits that underpin the resource base. In 2005, Australia had the world's largest economic demonstrated resources (EDR) of nickel, lead and zinc, and the second largest EDR of copper. Growth in nickel resources has been especially strong owing to discovery of large laterite resources in the late 1990s. Resource life, in average terms based on current EDR and production, is approximately 30 years for lead and zinc, 40 years for nickel sulphide (120 years for all nickel EDR) and 50 years for copper. Despite this success, major increases in production over the period (copper, nickel and zinc output increasing 3–4 fold, lead output doubling) and a fall in discovery rates during much of the 1990s means that resource life for lead and zinc is lower and nickel sulphide comparable now to that in 1976; only the resource life of copper has grown substantially over the period. Current published ore reserves are sufficient for at least 15 years operations at current production levels, but only a small number of the largest deposits currently being mined are likely to still be in production in 20 years. However, several mines have substantial inferred resources that may allow production beyond current mine reserves and there is a substantial number of undeveloped deposits that may provide the foundation for extended or new mining operations. The discovery record is strongly cyclical with resource growth for all the base metals punctuated by the discovery of giant (world-class) deposits each decade: these underpin current and future production. Recent higher metal prices and renewed interest in base metals, especially nickel, has reversed a 10 year decline in base metal exploration attended by reduced rates of discovery and resulted in record expenditure, new nickel, copper and zinc discoveries, and increased resources at a number of existing deposits, notably the Olympic Dam copper–uranium–gold deposit. With the exception of the Prominent Hill copper–gold and West Musgrave nickel–copper deposits, most of the recent discoveries, especially zinc (-lead) deposits, are of small tonnage (some of high grade). Nevertheless, these new discoveries have helped stimulate further exploration and also highlight the potential for further discoveries in little-explored provinces, especially those under regolith and shallow sedimentary cover.  相似文献   

12.
Spatial patterns in major dissolved solute concentrations were examined to better understand impact of surface coal mining in headwaters on downstream water chemistry. Sixty sites were sampled seasonally from 2012 to 2014 in an eastern Kentucky watershed. Watershed areas (WA) ranged from 1.6 to 400.5 km2 and were mostly forested (58%–95%), but some drained as much as 31% surface mining. Measures of total dissolved solutes and most component ions were positively correlated with mining. Analytes showed strong convergent spatial patterns with high variability in headwaters (<15 km2 WA) that stabilized downstream (WA > 75 km2), indicating hydrologic mixing primarily controls downstream values. Mean headwater solute concentrations were a good predictor of downstream values, with % differences ranging from 0.55% (Na+) to 28.78% (Mg2+). In a mined scenario where all headwaters had impacts, downstream solute concentrations roughly doubled. Alternatively, if mining impacts to headwaters were minimized, downstream solute concentrations better approximated the 300 μS/cm conductivity criterion deemed protective of aquatic life. Temporal variability also had convergent spatial patterns and mined streams were less variable due to unnaturally stable hydrology. The highly conserved nature of dissolved solutes from mining activities and lack of viable treatment options suggest forested, unmined watersheds would provide dilution that would be protective of downstream aquatic life.  相似文献   

13.
成雅高速公路两侧大气颗粒物中重金属分布规律研究   总被引:5,自引:0,他引:5  
闫军  叶芝祥  闫琰  黄小平 《四川环境》2008,27(1):19-21,26
本文以成雅高速公路为研究对象,采集公路两侧大气颗粒物样品,通过微波消解——火焰原子吸收法测定大气颗粒物中铅、镉、铜、锌的含量。研究表明,成雅公路两侧距路肩200m范围内大气颗粒物已受不同程度的铅、镉、铜、锌污染,其中重金属含量Pb〉Zn〉Cu〉Cd,并获得成雅高速公路两侧大气颗粒物中重金属污染的分布规律。  相似文献   

14.
To assess the risk from heavy metal accumulation to insectivorous species exposed to different pollutants, shrews [Sorex araneus (Linnaeus 1758) and Sorex minutus (Linnaeus 1766)] were collected in the Olkuski Ore Region (OOR; a Zn and Cd smelter area), Legnicko-G?ogowski Copper Mine Region (LGCR; a copper ore-mining area), and Bia?owieza Forest (BF; a control area). A few sites were chosen in each region and a total of 57 animals were collected from them. The liver and kidneys were dissected from the animals, dried, and digested in a 4:1 mixture of HNO3 (nitric acid) and HClO4 (perchloric acid). Cadmium, lead, zinc, copper, and iron were determined in the samples by flame or flameless atomic absorption spectrometry. The interactions between toxic and essential metals were calculated for each tissue. The data showed that accumulation of metals by insectivores is high; shrews accumulated much higher amounts of cadmium and lead than bank voles, studied by other researchers, from the same areas. The expected high tissue accumulation of copper at LGCR and zinc at OOR was not seen, but the levels of both elements were higher in the tissues of shrews from OOR than from LGCR. The lowest copper concentrations were in the tissues of shrews from BF. The highest cadmium and lead concentrations were found in the tissues of shrews from OOR. Some significant correlations were found between the tissue concentrations of xenobiotic and essential metals (e.g., between cadmium and zinc and between lead and iron).  相似文献   

15.
鲫鱼对铜和锌的吸收蓄积研究   总被引:2,自引:0,他引:2  
用原子吸收分光光度法研究铜和锌在鲫鱼体内积累行为,结果表明,溶解态和颗粒态铜和锌在鱼鳃、肌肉中的积累量随其浓度的增加而增加。铜和锌积累能力的大小顺序为锌〉铜。鱼鳃和肌肉对溶解态和颗粒态重金属的积累能力为鱼鳃大于肌肉,蓄积曲线表现为逐渐趋向平缓的形式。颗粒态鱼鳃积累尤其大于肌肉,说明鱼在对颗粒态铜和锌的积累过程中,部分颗粒态金属是吸附在鱼鳃上的。由于生理功能不同,鲫鱼对锌需要量比铜多。  相似文献   

16.
Sediments collected from Tap Mun (within Tolo Harbour) and Yim Tin Tsai (outside Tolo Harbour) were extracted sequentially and the copper, cadmium, and chromium contents were determined. Total contents of copper, cadmium, chromium, and arsenic were also detected by acid digestion. The level of heavy metal extracted was higher in sequential extraction (which extracted all forms of metal ions) than total acid digestion. Among the four heavy metals studied, only copper showed a significantly higher (P<0.001) level in samples collected from Yim Tin Tsai (16.10 mg/kg) than that from Tap Mun (3.19 mg/kg). Such a difference in copper level is mainly attributed to the significantly higher (P<0.05) levels of copper in the organic, carbonate, and sulfide forms, whereas there was no significant difference (P>0.05) in the exchangeable and sorbed forms. Green-lipped mussel (Perna viridis) samples collected from the two sites were dissected into seven parts (gill, byssus, siphon, shell, digestive gland, soft tissue, and adductor muscle) and the concentrations of copper, cadmium, chromium, and arsenic were measured. The highest concentration of copper was obtained in the byssus. A higher concentration of copper was also noted in the mussels collected from Yim Tin Tsai than those collected from Tap Mun. No specific trend was revealed for the other metals tested. Chromium and arsenic concentrations were found to be independent of the body size of the mussels. Copper had a lower concentration in larger mussels and cadmium level was found to decrease with size. In addition, the mussels collected from Tap Mun were much larger than those collected from Yim Tin Tsai.  相似文献   

17.
The occurrence of heavy metals in the soil was measured over a period of several years to determine background concentrations in a heavily urbanized watershed in southeastern Michigan. A spatially dispersed sample was collected to capture the inherent variability of the soils and historic land use. The analysis focused on 14 metals (antimony, arsenic, barium, beryllium, cadmium, chromium, copper, lead, mercury, nickel, selenium, silver, thallium, and zinc) that are part of the USEPA's list of the 129 most common pollutants. Metal concentrations were measured at three depths: near-surface (<0.5 m), shallow subsurface (0.5-10 m), and depths greater than 10 m across six soil units in glacial terrain. Additional analyses assessed the metal concentrations in each depth profile across three general land use categories: residential, commercial, and industrial. Metal concentrations were the highest in the near-surface with Pb present at concentrations averaging 15.5 times that of background in industrial areas and approximately 16 times background in residential areas. Cadmium, Hg, and Zn were also present in surface soils at levels of several times that of background. The highest concentrations of each of these metals were present in the clay-rich soils located in the eastern, more urbanized and industrialized part of the watershed. Metals detected at elevated concentrations decreased in concentration with increasing depth and distance from the urbanized and industrialized center of the watershed. Statistically significant differences in the concentrations of heavy metals were also noted between the land use categories, with Cd, Cr, Cu, Pb, Ni, and Zn observed within industrial areas at mean concentrations several times greater than background levels.  相似文献   

18.
ABSTRACT: Ground and surface water quality monitoring data from 71 municipal sanitary landfills in North Carolina were analyzed to determine the nature and extent of current contamination problems and identify any common characteristics associated with this contamination. A total of 322 surface and 411 ground water quality records were analyzed using the SAS data system. Almost all the landfill records included inorganic and heavy metal analyses while approximately half of the records also included organic analyses by CC/MS. Our analysis indicates that landfills are having measurable impacts on ground and surface water quality, but these impacts may not be as severe as is commonly assumed. Statistically significant increases were detected in the average concentrations in ground water and downstream surface water samples when compared to upstream surface water samples. The largest percentage increases were observed for zinc, turbidity, total organic carbon, conductivity, total dissolved solids, and lead. Violations of ground water quality standards for heavy metals and hazardous organic compounds were detected at 53 percent of the landfills where adequate data existed. The moat common heavy metal violations were for lead (18 percent), chromium (18 percent), zinc (6 percent), cadmium (6 percent), and arsenic (6 percent) (percentage of landfills violating shown in parenthesis). The organic compounds that appear to pose the greatest threat to ground water are the chlorinated solvents (8 percent), petroleum derived hydrocarbons (8 percent), and pesticides (5 percent). A comparison of monitoring data from sanitary landfills and secondary wastewater treatment plants suggests that the concentrations of heavy metal and organic pollutants discharged to surface waters from these two sources are similar.  相似文献   

19.
ABSTRACT: Gold was discovered in Georgia in 1829 and mined until about 1940 in the Dahionega Gold Belt of the north Goorgia Piedmont. Streams there are characterized by gravel beds and fine sandy to silty banks. Historical mining-related alluvium is clearly distinguished from prehistoric alluvium because it is contaminated with mercury (Hg), which was used by miners to amalgamate gold. Mercury concentrations in historical floodplain sediments range from 0.04 to 4.0 mg kg?1, exceeding background (0.04 mg kg1) by as much as two orders of magnitude near the core of the mining district and decreasing in the downstream direction. Low levels (≤ 0.1 mg kg1) of Hg are established within about 10–15 km from the source mines. The mercury-contaminated sediment exceeds sediment quality guidelines set by many agencies, and is a significant nonpoint source for mercury pollution. Hydraulic mining of saprolite, which began in 1868, and cutting of forests associated with mining and settlement caused unusually rapid sedimentation (1–3 cm yr?l) and floodplain aggradation in the region. After mining ceased, streams adjusted by downcutting and forming an historical-age terrace. A new floodplain is currently being formed as streams migrate lateraily and erode the mining-related sediment of the historical terrace. High magnitude floods are contained within the confines of the historical terrace, thus limiting quantities of over-bank sedimentation, causing channel bank erosion, and transmitting high sediment yields to reservoirs in the region.  相似文献   

20.
The New Lead. Belt of southeastern Missouri has recently become the largest lead producing region of the world. The impact of this rapid development on the previously rural and undeveloped region of the Missouri Ozarks is the subject of a continuing interdisciplinary study. Since the industrial development began, there have been a number of nuisance biological blooms in several of the small streams receiving effluent from the mines and mills. The major constituents of the problem algal growths were identified and found to include: Cladophora, Oscillatoria, Mougeotia, Zygnema, Spirogyra, Cymbella, and a variety of other stalked and non-stalked diatoms. Secondary blooms of Sphaerotilus were observed to reach problem proportions in some streams, particularly in the autumn. Finely ground rock flour and mineral particles escaping from tailings dams were found to be trapped by the stream vegetation. Concentrations of lead, zinc, copper, and manganese in the algal and bacterial mats were found to be inversely related to distance downstream from the tailings dams. Consumer organisms, including crayfish, snails, aquatic insects, tadpoles, minnows and larger sunfish were analyzed to determine the extent of dissemination and concentration of the heavy metals through food chains. Preliminary results indicated insignificant concentrations of heavy metals in those consumer organisms studied, though in at least one problem stream the normal consumer organisms mentioned were markedly reduced in numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号