首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the catalytic destruction of 1,2-dichlorobenzene were carried out on a specially constructed semi-technical equipment whose most important element was a catalytic reactor with a monolithic catalyst in the form of 150 x 150 x 100 mm cubes. A catalyst made from cordierite with an active layer composed of Al2O3 - 64 wt%, TiO2 - 26 wt%, V2O5 - 6.6 wt% and WO3 - 3.4 wt% was used. The reactor made it possible to carry out the process in the temperature range 150-350 degrees C, at variable catalyst loading and different velocities of gas flow through the reactor. The content of 1,2-dichlorobenzene in the air was analysed by a chromatographic method. A significant effect of catalyst loading and temperature on 1,2-dichlorobenzene destruction efficiency was observed and no effect of the linear flow velocity through the catalyst on o-dichlorobenzene destruction efficiency was reported. The applied vanadium-tungsten catalyst on a monolithic carrier made from TiO2/gamma-Al2O3 revealed very good activity that resulted in an over 80% efficiency of 1,2-dichlorobenzene destruction at the temperature around 250 degrees C at a very high catalyst loading reaching ca. 8200 h(-1). Additionally, in this study the kinetics of 1,2-dichlorobenzene decomposition was determined, specifying the order of reaction and dependence of the decomposition rate constant on temperature, using a simple power-rate law model.  相似文献   

2.
采用共沉淀法,以Al2O3为载体制备Mn/γ-Al2O3和Mn—Ce/Mn/γ-Al2O3催化剂,并分别在N2气氛和O2气氛下焙烧。采用固定床连续流动反应器,研究所制备催化剂在室温条件下催化臭氧氧化甲苯的性能。通过XRD、XPS和FTIR等手段对催化剂的结构和组成进行表征。结果表明,Mn/Mn/γ-Al2O3催化剂具有良好的催化臭氧氧化甲苯和催化臭氧自身分解的性能,共沉淀法制备催化剂的最佳Mn负载量为20%。O2气氛焙烧和Ce的加入,可以有效提高催化剂的活性和寿命。原因是O2气氛焙烧和Ce的加入可以提高Mn的氧化价态。催化剂失活的主要原因是有机副产物在催化剂表面吸附堆积,失活催化剂在550℃、空气气氛下焙烧可恢复催化性能。  相似文献   

3.
Manganese acetate (MnAc) and manganese nitrate (MnN) were employed as precursors for the preparation of MnAc)/TiO2, Mn (N)/TiO2, Mn(Ac)-Ce/TiO2, and Mn(N)-Ce/TiO2 by impregnation. These complexes were used as catalysts in the low-temperature selective catalytic reduction of NO with NH3. The influence of manganese precursors on catalyst characteristics, the reduction activity, and the stability of the catalysts to poisoning by H2O and SO2 were studied. Experiments showed that Mn(N) produced MnO2 with large grain sizes in Mn(N)/TiO2 catalyst. On the contrary, Mn(Ac) led to highly dispersed and amorphous Mn2O3 in Mn (Ac)/TiO2 catalyst, which had better catalytic activity and stability to SO2 at low temperatures. The doping of cerium reduced the differences in catalytic performance between the catalysts derived from different Mn precursors.  相似文献   

4.
The selective catalytic reduction (SCR) of NOx by C(2)H(5)OH was studied in excess oxygen over Ag/Al(2)O(3) catalysts with different Ag loadings at lab conditions. The 4% Ag/Al(2)O(3) has the highest activity for the C(2)H(5)OH-SCR of NOx with a drawback of simultaneously producing CO and unburned THC in effluent gases. An oxidation catalyst 10% Cu/Al(2)O(3) was directly placed after the Ag/Al(2)O(3) to remove CO and unburned THC. Washcoated honeycomb catalysts were prepared based on the 4% Ag/Al(2)O(3) and 10% Cu/Al(2)O(3) powders and tested for the C(2)H(5)OH-SCR of NOx on a diesel engine at the practical operating conditions. Compared with the Ag/Al(2)O(3) powder, the Ag/Al(2)O(3) washcoated honeycomb catalyst (SCR catalyst) has a similar activity for NOx reduction by C(2)H(5)OH and the drawback of increasing the CO and unburned THC emissions. Using the SCR+Oxi composite catalyst with the optimization of C(2)H(5)OH addition, the diesel engine completely meets EURO III emission standards.  相似文献   

5.
Wang CH 《Chemosphere》2004,55(1):11-17
The catalytic incineration of toluene over gamma-Al2O3-supported transition-metal oxide catalysts in the temperature range of 200-380 degrees C was investigated employing a fixed bed flow reactor. CuO/gamma-Al2O3 was found to be the most active of seven catalysts tested. Using this catalyst with different wt% Cu in the incineration of toluene, we found that the optimal Cu content was 5 wt%. X-ray diffraction, BET surface area and hydrogen-temperature-programmed reduction showed that it was mainly the formation of large CuO crystals that caused declines in catalyst activity at Cu content above 5 wt%. Addition of water vapor or CO2 inhibited catalyst activity, but this effect was reversible. Although coexistence of toluene and n-hexane resulted in a reduction in n-hexane conversion, the impact on toluene oxidation was only negligible. Temperature-programmed desorption revealed that this differential effect was due to more competitive adsorption of toluene onto active sites of the catalyst.  相似文献   

6.
以市售活性炭、硅藻土和氧化铝小球为载体,考察了负载铁基活性组分对催化臭氧化过程中溴酸盐的控制情况,其中,铁基复合氧化铝小球体现出更好的溴酸盐还原特性和催化剂稳定性,证实催化剂中铁氧化物是溴酸盐得到有效控制的主要活性组分。进一步考察了铁基复合氧化铝小球催化臭氧化处理实际原水过程中对溴酸盐的生成控制,以及反应过程中溶解性有机碳(DOC)的去除情况。结果表明,与单独臭氧化相比,该催化剂既能有效去除水中的溶解性有机物,又能明显抑制溴酸盐的生成,反应50h,其活性并没有明显下降。催化剂失活主要归因于吸附位点数量的下降,可以通过负载铁氧化物来实现催化剂的再生。  相似文献   

7.
研究了在120℃的反应温度下,H2O和SO2对V2O5-WO3/TiO2催化剂选择性催化氧化(SCO)NO的影响。结果表明,在H2O和SO2存在的情况下催化剂失活很快,停止通入H2O和SO2后活性不能恢复,但在加热到250℃后催化活性基本恢复。FT-IR分析表明,催化剂表面形成了金属硝酸盐和Ti的硫酸盐,对催化活性有一定影响,但不影响催化剂在250℃下催化活性的恢复。SO2、H2O和NO的竞争吸附与SO2和NO2的铅室反应是影响催化剂活性的主要原因。  相似文献   

8.
浸渍法制备了Al2O3+CeO2为载体的Pd催化剂,对制备中各因素对催化剂效果的影响作了初步研究。考察了活性组分含量与催化剂性能的关系以及焙烧温度、水蒸气对催化剂活性的影响。结果表明,稀土Ce元素的存在使催化剂的性能得到明显改善。制备过程中焙烧步骤对催化剂的活性影响很大,催化剂制备必须高于600℃焙烧。  相似文献   

9.
Wang CH  Lin SS  Liou SB  Weng HS 《Chemosphere》2002,49(4):389-394
The CuO-MoO3/gamma-Al2O3 catalyst, confirmed previously as having good activity in the catalytic incineration of (CH3)2S2, was employed as the principal catalyst in this study. With the aim of improving catalyst activity and resistance to deactivation by sulfur compounds, a promoter was added either before adding the precursors of Cu and Mo or together with Cu and Mo onto the gamma-Al2O3. Promoters included transition metals and elements from groups IA-VIIA in the chemical periodic table. Experimental results reveal Cr2O3 as the most effective promoter, with an optimal composition of 5 wt.% Cu, 6 wt.% Mo and 4 wt.% Cr (designated as Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3). Knowing that higher acidity can improve activity, we further investigated the effect of acid treatment on the performance of the Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3 catalyst. Experimental results indicate the H2SO4-treated catalyst (Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3) has a better activity and durability. A study for finding an appropriate rate expression for the catalytic incineration of (CH3)2S2 by Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3 was carried out in a differential reactor. The results show that the Mars-Van Krevelen model is applicable to this destructive oxidation reaction. Results additionally reveal that competitive adsorption of CH4 reduces conversion of (CH3)2S2.  相似文献   

10.
Fe(3+)-, Cr(3+)-, Cu(2+)-, Mn(2+)-, Co(2+)-, and Ni(2+)-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe(3+)-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by approximately 85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

11.
运用微反技术考察了CrOX负载型催化剂对CO+O2和CO+NO反应的催化活性。研究了微量Pd加和CrOX基双组元催化剂对上述反应的催化活性,中间产物N2O生成和N2生成的影响。  相似文献   

12.
研究以纳米TiO2为载体,浸渍负载过渡金属氧化物,以CO为还原剂的脱硝催化剂的脱硝性能。实验中以计算量的Ni(NO3)2和Fe(NO3)3混合溶液浸渍纳米TiO2粉末,室温下搅拌30 min至混合均匀,放入旋转蒸发器中,70℃下至水分蒸干为止;所得粉末在550℃下、空气气氛中焙烧4 h即得所需催化剂。用以上方法分别制备2%Fe2O3-10%Cr2O3/TiO2、4%Fe2O3-8%Cr2O3/TiO2、6%Fe2O3-6%Cr2O3/TiO2、8%Fe2O3-4%Cr2O3/TiO2与10%Fe2O3-2%Cr2O3/TiO2等5种催化剂样品。实验结果表明,制备的催化剂具有较好的结构,分散较为均匀。对于CO+NO反应,Fe2O3-Cr2O3/TiO2系列催化剂具有较好的催化活性,NO的转化率都达到了100%。其中,10%Fe2O3-2%Cr2O3/TiO2样品具有最好的低温活性,H2-TPR结果表明,这是由于10%Fe2O3-2%Cr2O3/TiO2催化剂更易于被CO预还原。  相似文献   

13.
Goo JH  Irfan MF  Kim SD  Hong SC 《Chemosphere》2007,67(4):718-723
The selective catalytic reduction (SCR) characteristics of NO and NO(2) over V(2)O(5)-WO(3)-MnO(2)/TiO(2) catalyst using ammonia as a reducing agent have been determined in a fixed-bed reactor at 200-400 degrees C. The presence of NO(2) enhances the SCR activity at lower temperatures and the optimum ratio of NO(2)/NO(x) is found to be 0.5. During the SCR reactions, there are some side reactions occurred such as ammonia oxidation and N(2)O formation. At higher temperatures, the selective catalytic oxidation of ammonia and the nitrous oxide formation compete with the SCR reactions. The denitrification (DeNO(x)) conversion decreases at lower temperatures but it increases at higher temperatures with increasing SO(2) concentration. The presence of SO(2) in the feeds inhibits N(2)O formation.  相似文献   

14.
In this study, styrene monomer (SM) was treated by a commercial catalyst, Mn2O3/Fe2O3, in a fixed-bed reactor. The study can be classified into two major parts. First, the effects of operating factors, such as temperature, SM concentration, space velocity, and O2 concentration, on the performance of the catalyst were investigated. Second, two catalyst life tests were carried out to characterize the deactivation effect of SM. The results show that the catalyst results in higher conversion of SM at a higher inlet temperature and higher O2 concentrations. The conversion of SM decreases with increasing SM concentration and space velocity. From the statistical analysis of the data, we find that temperature is the most important factor on the catalytic incineration. Oxygen concentration, SM concentration, and space velocity are significant parameters as well. This paper also provides information on the deactivation effect of SM. The catalysts were characterized by surface and pore-size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron spectroscopy for chemical analysis (ESCA) before and after the tests. The results show that the catalytic deactivation may be caused by carbon coating, and the pore size and surface area of the catalyst are smaller after deactivation.  相似文献   

15.
This paper concerns the incineration of isopropyl alcohol (IPA) using the ferrospinel catalyst MnFe2O4. It covers the preparation of the ferrospinel catalyst, the screening of catalytic activity, catalytic incineration testing, and 72-hr decay testing of the catalyst. The experimental results of catalyst screening reveal that the Mn/Fe catalyst is the best of five prepared catalysts (chromium/iron [Cr/Fe], manganese/iron [Mn/Fe], zinc/iron [Zn/Fe], nickel/iron [Ni/Fe], and pure magnetite [Fe3O4]). In tests of the catalytic incineration system used to convert IPA, 98% conversion was obtained at a space velocity of 24,000 hr(-1), an oxygen (O2) content of 21%, 1700 ppm of IPA, and a reaction temperature of 200 degrees C.  相似文献   

16.
Huang YJ  Wang HP  Yeh CT  Tai CC  Peng CY 《Chemosphere》1999,39(13):2279-2287
Experimentally, decomposition of NO on the alkalized Pd/Al2O3 catalyst is remarkably enhanced at 825-1000 K. The enhancement in N2 yield may be due to the additional basic sites on the alkalized catalyst that can trap NO molecules. However, at T > 1000 K, due to the fact that the absorbed oxygen in subsurface or bulk of Pd was involved in the formation and desorption of oxygen molecules, yield of oxygen was enhanced.  相似文献   

17.
目前污水处理过程中产生温室气体的问题已经引起普遍关注。本文通过实验室小试,研究了不同污水水质条件下A2O工艺中N2O的产生特征,以及氧化亚氮还原酶编码基因nosZ含量对N2O产生量的影响。结果表明,在A2O工艺中的各单元均有N2O产生,其中厌氧池产生量最大,约占总产生量的32%~85%;A2O工艺产生的N2O主要通过逸散进入大气,少量随二沉池出水进入到环境中。N2O的产生量与污泥中nosZ的含量成负相关,而碳源和DO对含有nosZ基因的反硝化细菌有明显的影响,低DO环境和充足的碳源能够极大的促进其含量的提高,从而显著减少N2O的产生量。  相似文献   

18.
研究了微波辐射下,以负载于沸石上的三氧化二铋为催化剂,以双氧水为氧化剂的催化氧化体系处理硝基苯工艺。通过单因素实验法,从反应催化剂负载量、pH、双氧水用量、微波功率、反应时间、催化剂用量等方面初步考察了硝基苯在该体系中的催化氧化效果。在氧化铋负载量3%(质量比),pH=2,2 mL 30%双氧水,火力为中火,催化剂投加量为0.7 g,反应2 m in,对降解过程所得的中间产物和终产物进行了分析。结果表明,该体系对硝基苯的去除率能够达到99.2%,COD去除率为73.91%。  相似文献   

19.
Direct decomposition of N2O by perovskite-structure catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 was investigated. The catalysts were prepared by the Pechini method and characterized by x-ray diffraction (XRD), BET, scanning electron microscopy (SEM), and O2-TPD. Experimental results indicate that the properties of La2NiO4 are significantly improved by partially substituting La with Sr and Ce. N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are 44 and 36%, respectively, at 400ºC. As the temperature was increased to 600ºC, N2O decomposition efficiency achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reached 100% at an inlet N2O concentration of 1,000 ppm, while the space velocity was fixed at 8,000 hr?1. In addition, effects of various parameters including oxygen, water vapor, and space velocity were also explored. The results indicate that N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 are not significantly affected as space velocity is increased from 8,000 to 20,000 hr?1, while La0.7Ce0.3SrNiO4 shows better tolerance for O2 and H2O(g). On the other hand, N2 yield with LaSrNiO4 as catalyst can be significantly improved by doping Ce. At a gas hour space velocity of 8,000 hr?1, and a temperature of 600ºC, high N2O decomposition efficiency and N2 yield were maintained throughout the durability test of 60 hr, indicating the long-term stability of La0.7Ce0.3SrNiO4 for N2O decomposition.
Implications:Nitrous oxide (N2O) not only has a high global warming potential (GWP100 = 310), but also potentially destroys ozone in the stratosphere. Pervoskite-type catalysts including La2NiO4, LaSrNiO4, and La0.7Ce0.3SrNiO4 are applied for direct N2O decomposition. The results show that N2O decomposition can be enhanced as Sr and Ce are doped into La2NiO4. At 600ºC, N2O decomposition efficiencies achieved with LaSrNiO4 and La0.7Ce0.3SrNiO4 reach 100%, demonstrating high activity and good potential for direct N2O decomposition. Effects of O2 and H2O(g) contents on catalytic activities are also evaluated and discussed.  相似文献   

20.
Chen IP  Lin SS  Wang CH  Chang SH 《Chemosphere》2007,66(1):172-178
The effect of promoter addition on activity of CeO(2)/gamma-Al(2)O(3) was assessed via the CWAO of phenol. Adding Cu as the promoter rendered the most effective performance, followed by Mn, although the performance of Mn-promoted catalyst was inferior to CeO(2)/gamma-Al(2)O(3). Mineralization of phenol was effectively implemented at 160 degrees C using Cu-promoted catalyst (Ce15Cu5). Furthermore, at 180 degrees C this catalyst produced about 100% conversion of phenol (1h) and 95% removal of chemical oxygen demand (4h), higher than that of CeO(2)/gamma-Al(2)O(3). In contrast, Mn-promoted catalyst (Ce15Mn5) required a temperature above 220 degrees C for acceptable performance. Activity of re-used catalyst declined noticeably, due to deposits of carbonaceous compounds and leaching of metal ions. Regeneration with acetone rinsing after the first run was effective in recovering activity of Ce15Cu5, although after a second run further regeneration with acetone rinsing had only a moderate effect, due to residual carbonaceous deposits and the additive effect of leached metal species in each run. As an alternative to acetone, HCl or HNO(3) solution (0.01 M) was less effective at regenerating activity. In promoted catalysts, leached metal ions accounted for the majority of mineralization of phenol, while the solid catalyst played a dual role of initiator and terminator of free radicals. Despite a superior catalytic performance, leaching of Cu(2+) from the promoted catalyst caused a severe decline in activity and poses the problem of secondary pollution of treated wastewater. Therefore, addition of Cu, as well as other metal species, is unfavorable in promoting the CeO(2)/gamma-Al(2)O(3) catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号